Nuprl Lemma : real-vec-dist-from-zero

[n:ℕ]. ∀[p:ℝ^n].  (d(p;λi.r0) ||p||)


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec-norm: ||x|| real-vec: ^n req: y int-to-real: r(n) nat: uall: [x:A]. B[x] lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec-dist: d(x;y) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat: uimplies: supposing a subtype_rel: A ⊆B implies:  Q req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec-sub: Y uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  real-vec-norm_functionality real-vec-sub_wf int-to-real_wf int_seg_wf req_witness real-vec-dist_wf real-vec-norm_wf real-vec_wf istype-nat rsub_wf itermSubtract_wf itermVar_wf itermConstant_wf req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt setElimination rename productElimination hypothesis universeIsType natural_numberEquality independent_isectElimination applyEquality because_Cache independent_functionElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaFormation_alt dependent_functionElimination approximateComputation int_eqEquality equalityTransitivity equalitySymmetry voidElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}n].    (d(p;\mlambda{}i.r0)  =  ||p||)



Date html generated: 2019_10_30-AM-08_29_06
Last ObjectModification: 2019_07_02-AM-11_00_41

Theory : reals


Home Index