Nuprl Lemma : real-vec-dist-from-zero
∀[n:ℕ]. ∀[p:ℝ^n].  (d(p;λi.r0) = ||p||)
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y)
, 
real-vec-norm: ||x||
, 
real-vec: ℝ^n
, 
req: x = y
, 
int-to-real: r(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec-dist: d(x;y)
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
req-vec: req-vec(n;x;y)
, 
all: ∀x:A. B[x]
, 
real-vec-sub: X - Y
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
real-vec-norm_functionality, 
real-vec-sub_wf, 
int-to-real_wf, 
int_seg_wf, 
req_witness, 
real-vec-dist_wf, 
real-vec-norm_wf, 
real-vec_wf, 
istype-nat, 
rsub_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
universeIsType, 
natural_numberEquality, 
independent_isectElimination, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
lambdaFormation_alt, 
dependent_functionElimination, 
approximateComputation, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}n].    (d(p;\mlambda{}i.r0)  =  ||p||)
Date html generated:
2019_10_30-AM-08_29_06
Last ObjectModification:
2019_07_02-AM-11_00_41
Theory : reals
Home
Index