Nuprl Lemma : interval-cube-uniform-continuity
∀I:{I:Interval| icompact(I)} 
  (iproper(I)
  
⇒ (∀n,k:ℕ. ∀f:{f:I^n ⟶ ℝ^k| ∀x,y:I^n.  (req-vec(n;x;y) 
⇒ req-vec(k;f x;f y))} . ∀e:{e:ℝ| r0 < e} .
        ∃d:ℕ+. ∀x,y:I^n.  ((d(x;y) ≤ (r1/r(d))) 
⇒ (d(f x;f y) ≤ e))))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y)
, 
interval-vec: I^n
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
icompact: icompact(I)
, 
iproper: iproper(I)
, 
interval: Interval
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
iproper: iproper(I)
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
real-cube: real-cube(n;a;b)
, 
interval-vec: I^n
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
nat: ℕ
, 
real-vec: ℝ^n
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
istype: istype(T)
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
icompact: icompact(I)
Lemmas referenced : 
icompact-is-rccint, 
sq_stable__icompact, 
int_seg_wf, 
i-member_wf, 
real-cube_wf, 
left-endpoint_wf, 
right-endpoint_wf, 
rccint_wf, 
interval-vec_wf, 
real-cube-uniform-continuity, 
subtype_rel_sets, 
real-vec_wf, 
all_wf, 
req-vec_wf, 
subtype_rel_set, 
subtype_rel_dep_function, 
subtype_rel_weakening, 
ext-eq_inversion, 
rleq_wf, 
real-vec-dist_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
real_wf, 
istype-nat, 
iproper_wf, 
interval_wf, 
icompact_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
lambdaEquality_alt, 
dependent_set_memberEquality_alt, 
productElimination, 
universeIsType, 
natural_numberEquality, 
functionIsType, 
applyEquality, 
functionEquality, 
inhabitedIsType, 
dependent_pairFormation_alt, 
closedConclusion, 
inrFormation_alt, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
setIsType
Latex:
\mforall{}I:\{I:Interval|  icompact(I)\} 
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}n,k:\mBbbN{}.  \mforall{}f:\{f:I\^{}n  {}\mrightarrow{}  \mBbbR{}\^{}k|  \mforall{}x,y:I\^{}n.    (req-vec(n;x;y)  {}\mRightarrow{}  req-vec(k;f  x;f  y))\}  .
            \mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
                \mexists{}d:\mBbbN{}\msupplus{}.  \mforall{}x,y:I\^{}n.    ((d(x;y)  \mleq{}  (r1/r(d)))  {}\mRightarrow{}  (d(f  x;f  y)  \mleq{}  e))))
Date html generated:
2019_10_30-AM-10_14_36
Last ObjectModification:
2019_06_28-PM-01_52_04
Theory : real!vectors
Home
Index