Nuprl Lemma : interval-cube-uniform-continuity

I:{I:Interval| icompact(I)} 
  (iproper(I)
   (∀n,k:ℕ. ∀f:{f:I^n ⟶ ℝ^k| ∀x,y:I^n.  (req-vec(n;x;y)  req-vec(k;f x;f y))} . ∀e:{e:ℝr0 < e} .
        ∃d:ℕ+. ∀x,y:I^n.  ((d(x;y) ≤ (r1/r(d)))  (d(f x;f y) ≤ e))))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) interval-vec: I^n req-vec: req-vec(n;x;y) real-vec: ^n icompact: icompact(I) iproper: iproper(I) interval: Interval rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) real: nat_plus: + nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_stable: SqStable(P) squash: T iproper: iproper(I) ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B real-cube: real-cube(n;a;b) interval-vec: I^n i-member: r ∈ I rccint: [l, u] nat: real-vec: ^n prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} istype: istype(T) exists: x:A. B[x] nat_plus: + rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y sq_exists: x:A [B[x]] ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top icompact: icompact(I)
Lemmas referenced :  icompact-is-rccint sq_stable__icompact int_seg_wf i-member_wf real-cube_wf left-endpoint_wf right-endpoint_wf rccint_wf interval-vec_wf real-cube-uniform-continuity subtype_rel_sets real-vec_wf all_wf req-vec_wf subtype_rel_set subtype_rel_dep_function subtype_rel_weakening ext-eq_inversion rleq_wf real-vec-dist_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf real_wf istype-nat iproper_wf interval_wf icompact_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis independent_isectElimination dependent_functionElimination hypothesisEquality independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination independent_pairFormation lambdaEquality_alt dependent_set_memberEquality_alt productElimination universeIsType natural_numberEquality functionIsType applyEquality functionEquality inhabitedIsType dependent_pairFormation_alt closedConclusion inrFormation_alt unionElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination equalityTransitivity equalitySymmetry setIsType

Latex:
\mforall{}I:\{I:Interval|  icompact(I)\} 
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}n,k:\mBbbN{}.  \mforall{}f:\{f:I\^{}n  {}\mrightarrow{}  \mBbbR{}\^{}k|  \mforall{}x,y:I\^{}n.    (req-vec(n;x;y)  {}\mRightarrow{}  req-vec(k;f  x;f  y))\}  .
            \mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
                \mexists{}d:\mBbbN{}\msupplus{}.  \mforall{}x,y:I\^{}n.    ((d(x;y)  \mleq{}  (r1/r(d)))  {}\mRightarrow{}  (d(f  x;f  y)  \mleq{}  e))))



Date html generated: 2019_10_30-AM-10_14_36
Last ObjectModification: 2019_06_28-PM-01_52_04

Theory : real!vectors


Home Index