Nuprl Lemma : unit-ball-approx_wf
∀[n,k:ℕ].  (unit-ball-approx(n;k) ∈ Type)
Proof
Definitions occuring in Statement : 
unit-ball-approx: unit-ball-approx(n;k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
unit-ball-approx: unit-ball-approx(n;k)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
int_seg_wf, 
le_wf, 
sum_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
minusEquality, 
addEquality, 
because_Cache, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
multiplyEquality, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[n,k:\mBbbN{}].    (unit-ball-approx(n;k)  \mmember{}  Type)
Date html generated:
2019_10_30-AM-11_28_01
Last ObjectModification:
2019_06_28-PM-01_56_05
Theory : real!vectors
Home
Index