Step * of Lemma unit-ball-to-unit-cube

n:ℕ+
  ∃g:ℝ^n ⟶ ℝ^n
   ((∀p:ℝ^n. (req-vec(n;p;λi.r0)  p ≡ λi.r0))
   ∧ (∀p:{p:ℝ^n| r0 < mdist(max-metric(n);λi.r0;p)} p ≡ p.(||p||/mdist(max-metric(n);p;λi.r0))*p) p)
   ∧ (g ∈ {p:ℝ^n| ||p|| ≤ r1}  ⟶ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} )
   ∧ g:FUN(ℝ^n;ℝ^n)
   ∧ (∀x,y:{p:ℝ^n| ||p|| ≤ r1} .  (mdist(max-metric(n);g x;g y) ≤ (r((2 n) 1) mdist(rn-metric(n);x;y)))))
BY
((Auto THEN (Assert λi.r0 ∈ ℝ^n BY Auto))
   THEN (InstLemma `max-metric-leq-rn-metric` [⌜n⌝]⋅ THENA Auto)
   THEN (InstLemma `rn-metric-leq-max-metric` [⌜n⌝]⋅ THENA Auto)
   THEN Assert ⌜∀p:ℝ^n. (r0 < ||p|| ⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))⌝⋅}

1
.....assertion..... 
1. : ℕ+
2. λi.r0 ∈ ℝ^n
3. max-metric(n) ≤ rn-metric(n)
4. rn-metric(n) ≤ r(n)*max-metric(n)
⊢ ∀p:ℝ^n. (r0 < ||p|| ⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))

2
1. : ℕ+
2. λi.r0 ∈ ℝ^n
3. max-metric(n) ≤ rn-metric(n)
4. rn-metric(n) ≤ r(n)*max-metric(n)
5. ∀p:ℝ^n. (r0 < ||p|| ⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))
⊢ ∃g:ℝ^n ⟶ ℝ^n
   ((∀p:ℝ^n. (req-vec(n;p;λi.r0)  p ≡ λi.r0))
   ∧ (∀p:{p:ℝ^n| r0 < mdist(max-metric(n);λi.r0;p)} p ≡ p.(||p||/mdist(max-metric(n);p;λi.r0))*p) p)
   ∧ (g ∈ {p:ℝ^n| ||p|| ≤ r1}  ⟶ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} )
   ∧ g:FUN(ℝ^n;ℝ^n)
   ∧ (∀x,y:{p:ℝ^n| ||p|| ≤ r1} .  (mdist(max-metric(n);g x;g y) ≤ (r((2 n) 1) mdist(rn-metric(n);x;y)))))


Latex:


Latex:
\mforall{}n:\mBbbN{}\msupplus{}
    \mexists{}g:\mBbbR{}\^{}n  {}\mrightarrow{}  \mBbbR{}\^{}n
      ((\mforall{}p:\mBbbR{}\^{}n.  (req-vec(n;p;\mlambda{}i.r0)  {}\mRightarrow{}  g  p  \mequiv{}  \mlambda{}i.r0))
      \mwedge{}  (\mforall{}p:\{p:\mBbbR{}\^{}n|  r0  <  mdist(max-metric(n);\mlambda{}i.r0;p)\} 
                g  p  \mequiv{}  (\mlambda{}p.(||p||/mdist(max-metric(n);p;\mlambda{}i.r0))*p)  p)
      \mwedge{}  (g  \mmember{}  \{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\}    {}\mrightarrow{}  \{q:\mBbbR{}\^{}n|  mdist(max-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}  )
      \mwedge{}  g:FUN(\mBbbR{}\^{}n;\mBbbR{}\^{}n)
      \mwedge{}  (\mforall{}x,y:\{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\}  .
                (mdist(max-metric(n);g  x;g  y)  \mleq{}  (r((2  *  n)  +  1)  *  mdist(rn-metric(n);x;y)))))


By


Latex:
((Auto  THEN  (Assert  \mlambda{}i.r0  \mmember{}  \mBbbR{}\^{}n  BY  Auto))
  THEN  (InstLemma  `max-metric-leq-rn-metric`  [\mkleeneopen{}n\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  (InstLemma  `rn-metric-leq-max-metric`  [\mkleeneopen{}n\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  Assert  \mkleeneopen{}\mforall{}p:\mBbbR{}\^{}n.  (r0  <  ||p||  \mLeftarrow{}{}\mRightarrow{}  r0  <  mdist(max-metric(n);\mlambda{}i.r0;p))\mkleeneclose{}\mcdot{})




Home Index