Step
*
1
of Lemma
unit-ball-to-unit-cube
.....assertion.....
1. n : ℕ+
2. λi.r0 ∈ ℝ^n
3. max-metric(n) ≤ rn-metric(n)
4. rn-metric(n) ≤ r(n)*max-metric(n)
⊢ ∀p:ℝ^n. (r0 < ||p||
⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))
BY
{ ((D 0 THENA Auto)
THEN (D 4 With ⌜λi.r0⌝ THENA Auto)
THEN (D -1 With ⌜p⌝ THENA Auto)
THEN (D 3 With ⌜λi.r0⌝ THENA Auto)
THEN (D -1 With ⌜p⌝ THENA Auto)
THEN (Assert mdist(rn-metric(n);λi.r0;p) = ||p|| BY
(RepUR ``mdist rn-metric`` 0 THEN RWO "real-vec-dist-symmetry" 0 THEN Auto))) }
1
1. n : ℕ+
2. λi.r0 ∈ ℝ^n
3. p : ℝ^n
4. mdist(rn-metric(n);λi.r0;p) ≤ mdist(r(n)*max-metric(n);λi.r0;p)
5. mdist(max-metric(n);λi.r0;p) ≤ mdist(rn-metric(n);λi.r0;p)
6. mdist(rn-metric(n);λi.r0;p) = ||p||
⊢ r0 < ||p||
⇐⇒ r0 < mdist(max-metric(n);λi.r0;p)
Latex:
Latex:
.....assertion.....
1. n : \mBbbN{}\msupplus{}
2. \mlambda{}i.r0 \mmember{} \mBbbR{}\^{}n
3. max-metric(n) \mleq{} rn-metric(n)
4. rn-metric(n) \mleq{} r(n)*max-metric(n)
\mvdash{} \mforall{}p:\mBbbR{}\^{}n. (r0 < ||p|| \mLeftarrow{}{}\mRightarrow{} r0 < mdist(max-metric(n);\mlambda{}i.r0;p))
By
Latex:
((D 0 THENA Auto)
THEN (D 4 With \mkleeneopen{}\mlambda{}i.r0\mkleeneclose{} THENA Auto)
THEN (D -1 With \mkleeneopen{}p\mkleeneclose{} THENA Auto)
THEN (D 3 With \mkleeneopen{}\mlambda{}i.r0\mkleeneclose{} THENA Auto)
THEN (D -1 With \mkleeneopen{}p\mkleeneclose{} THENA Auto)
THEN (Assert mdist(rn-metric(n);\mlambda{}i.r0;p) = ||p|| BY
(RepUR ``mdist rn-metric`` 0 THEN RWO "real-vec-dist-symmetry" 0 THEN Auto)))
Home
Index