Step
*
2
2
2
3
of Lemma
unit-ball-to-unit-cube
.....wf..... 
1. n : ℕ+
2. λi.r0 ∈ ℝ^n
3. max-metric(n) ≤ rn-metric(n)
4. rn-metric(n) ≤ r(n)*max-metric(n)
5. ∀p:ℝ^n. (r0 < ||p|| 
⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))
6. ∀p:{p:ℝ^n| r0 < mdist(max-metric(n);p;λi.r0)} . ((||p||/mdist(max-metric(n);p;λi.r0))*p ∈ ℝ^n)
7. h : ℝ^n ⟶ ℝ^n
8. ∀p:ℝ^n. (req-vec(n;p;λi.r0) 
⇒ h p ≡ λi.r0)
9. ∀p:{p:ℝ^n| r0 < mdist(max-metric(n);p;λi.r0)} . h p ≡ (||p||/mdist(max-metric(n);p;λi.r0))*p
10. λp.(||p||/mdist(max-metric(n);p;λi.r0))*p:FUN({p:ℝ^n| r0 < mdist(max-metric(n);p;λi.r0)} ℝ^n) 
⇒ h:FUN(ℝ^n;ℝ^n)
11. h ∈ {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1}  ⟶ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
12. g : ℝ^n ⟶ ℝ^n
⊢ istype((∀p:ℝ^n. (req-vec(n;p;λi.r0) 
⇒ g p ≡ λi.r0))
∧ (∀p:{p:ℝ^n| r0 < mdist(max-metric(n);λi.r0;p)} . g p ≡ (λp.(||p||/mdist(max-metric(n);p;λi.r0))*p) p)
∧ (g ∈ {p:ℝ^n| ||p|| ≤ r1}  ⟶ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} )
∧ g:FUN(ℝ^n;ℝ^n)
∧ (∀x,y:{p:ℝ^n| ||p|| ≤ r1} .  (mdist(max-metric(n);g x;g y) ≤ (r((2 * n) + 1) * mdist(rn-metric(n);x;y)))))
BY
{ (Reduce 0 THEN (D 0 THENL [Auto; (D 0 THENL [(D 0 THENL [Auto; (DVar `p' THEN Auto)]); Auto])])) }
1
1. n : ℕ+
2. λi.r0 ∈ ℝ^n
3. max-metric(n) ≤ rn-metric(n)
4. rn-metric(n) ≤ r(n)*max-metric(n)
5. ∀p:ℝ^n. (r0 < ||p|| 
⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))
6. ∀p:{p:ℝ^n| r0 < mdist(max-metric(n);p;λi.r0)} . ((||p||/mdist(max-metric(n);p;λi.r0))*p ∈ ℝ^n)
7. h : ℝ^n ⟶ ℝ^n
8. ∀p:ℝ^n. (req-vec(n;p;λi.r0) 
⇒ h p ≡ λi.r0)
9. ∀p:{p:ℝ^n| r0 < mdist(max-metric(n);p;λi.r0)} . h p ≡ (||p||/mdist(max-metric(n);p;λi.r0))*p
10. λp.(||p||/mdist(max-metric(n);p;λi.r0))*p:FUN({p:ℝ^n| r0 < mdist(max-metric(n);p;λi.r0)} ℝ^n) 
⇒ h:FUN(ℝ^n;ℝ^n)
11. h ∈ {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1}  ⟶ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
12. g : ℝ^n ⟶ ℝ^n
13. x : ∀p:ℝ^n. (req-vec(n;p;λi.r0) 
⇒ g p ≡ λi.r0)
14. p : ℝ^n
15. r0 < mdist(max-metric(n);λi.r0;p)
⊢ mdist(max-metric(n);p;λi.r0) ≠ r0
Latex:
Latex:
.....wf..... 
1.  n  :  \mBbbN{}\msupplus{}
2.  \mlambda{}i.r0  \mmember{}  \mBbbR{}\^{}n
3.  max-metric(n)  \mleq{}  rn-metric(n)
4.  rn-metric(n)  \mleq{}  r(n)*max-metric(n)
5.  \mforall{}p:\mBbbR{}\^{}n.  (r0  <  ||p||  \mLeftarrow{}{}\mRightarrow{}  r0  <  mdist(max-metric(n);\mlambda{}i.r0;p))
6.  \mforall{}p:\{p:\mBbbR{}\^{}n|  r0  <  mdist(max-metric(n);p;\mlambda{}i.r0)\}  .  ((||p||/mdist(max-metric(n);p;\mlambda{}i.r0))*p  \mmember{}  \mBbbR{}\^{}n)
7.  h  :  \mBbbR{}\^{}n  {}\mrightarrow{}  \mBbbR{}\^{}n
8.  \mforall{}p:\mBbbR{}\^{}n.  (req-vec(n;p;\mlambda{}i.r0)  {}\mRightarrow{}  h  p  \mequiv{}  \mlambda{}i.r0)
9.  \mforall{}p:\{p:\mBbbR{}\^{}n|  r0  <  mdist(max-metric(n);p;\mlambda{}i.r0)\}  .  h  p  \mequiv{}  (||p||/mdist(max-metric(n);p;\mlambda{}i.r0))*p
10.  \mlambda{}p.(||p||/mdist(max-metric(n);p;\mlambda{}i.r0))*p:FUN(\{p:\mBbbR{}\^{}n|  r0  <  mdist(max-metric(n);p;\mlambda{}i.r0)\}  ;\mBbbR{}\^{}n)  {}\000C\mRightarrow{}  h:FUN(\mBbbR{}\^{}n;\mBbbR{}\^{}n)
11.  h  \mmember{}  \{q:\mBbbR{}\^{}n|  mdist(rn-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}    {}\mrightarrow{}  \{q:\mBbbR{}\^{}n|  mdist(max-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\} 
12.  g  :  \mBbbR{}\^{}n  {}\mrightarrow{}  \mBbbR{}\^{}n
\mvdash{}  istype((\mforall{}p:\mBbbR{}\^{}n.  (req-vec(n;p;\mlambda{}i.r0)  {}\mRightarrow{}  g  p  \mequiv{}  \mlambda{}i.r0))
\mwedge{}  (\mforall{}p:\{p:\mBbbR{}\^{}n|  r0  <  mdist(max-metric(n);\mlambda{}i.r0;p)\} 
          g  p  \mequiv{}  (\mlambda{}p.(||p||/mdist(max-metric(n);p;\mlambda{}i.r0))*p)  p)
\mwedge{}  (g  \mmember{}  \{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\}    {}\mrightarrow{}  \{q:\mBbbR{}\^{}n|  mdist(max-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}  )
\mwedge{}  g:FUN(\mBbbR{}\^{}n;\mBbbR{}\^{}n)
\mwedge{}  (\mforall{}x,y:\{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\}  .
          (mdist(max-metric(n);g  x;g  y)  \mleq{}  (r((2  *  n)  +  1)  *  mdist(rn-metric(n);x;y)))))
By
Latex:
(Reduce  0  THEN  (D  0  THENL  [Auto;  (D  0  THENL  [(D  0  THENL  [Auto;  (DVar  `p'  THEN  Auto)]);  Auto])]))
Home
Index