Nuprl Lemma : Cauchy-Schwarz-strict

n:ℕ. ∀x,y:ℝ^n.  (∃i,j:ℕn. (x j) (y i) ≠ (x i) (y j) ⇐⇒ |x⋅y| < (||x|| ||y||))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| dot-product: x⋅y real-vec: ^n rneq: x ≠ y rless: x < y rabs: |x| rmul: b int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T real-vec: ^n so_apply: x[s] dot-product: x⋅y real-vec-norm: ||x|| uall: [x:A]. B[x]
Lemmas referenced :  Cauchy-Schwarz3-strict real-vec_wf nat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule isectElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.    (\mexists{}i,j:\mBbbN{}n.  (x  j)  *  (y  i)  \mneq{}  (x  i)  *  (y  j)  \mLeftarrow{}{}\mRightarrow{}  |x\mcdot{}y|  <  (||x||  *  ||y||))



Date html generated: 2017_10_03-AM-10_52_41
Last ObjectModification: 2017_06_19-PM-04_14_00

Theory : reals


Home Index