Nuprl Lemma : Cauchy-Schwarz-strict
∀n:ℕ. ∀x,y:ℝ^n.  (∃i,j:ℕn. (x j) * (y i) ≠ (x i) * (y j) ⇐⇒ |x⋅y| < (||x|| * ||y||))
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||, 
dot-product: x⋅y, 
real-vec: ℝ^n, 
rneq: x ≠ y, 
rless: x < y, 
rabs: |x|, 
rmul: a * b, 
int_seg: {i..j-}, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
real-vec: ℝ^n, 
so_apply: x[s], 
dot-product: x⋅y, 
real-vec-norm: ||x||, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
Cauchy-Schwarz3-strict, 
real-vec_wf, 
nat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isectElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.    (\mexists{}i,j:\mBbbN{}n.  (x  j)  *  (y  i)  \mneq{}  (x  i)  *  (y  j)  \mLeftarrow{}{}\mRightarrow{}  |x\mcdot{}y|  <  (||x||  *  ||y||))
Date html generated:
2017_10_03-AM-10_52_41
Last ObjectModification:
2017_06_19-PM-04_14_00
Theory : reals
Home
Index