Nuprl Lemma : Cauchy-Schwarz3-strict
∀n:ℕ. ∀x,y:ℕn ⟶ ℝ.
  (∃i,j:ℕn. x[j] * y[i] ≠ x[i] * y[j]
  
⇐⇒ |Σ{x[i] * y[i] | 0≤i≤n - 1}| < (rsqrt(Σ{x[i] * x[i] | 0≤i≤n - 1}) * rsqrt(Σ{y[i] * y[i] | 0≤i≤n - 1})))
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rneq: x ≠ y
, 
rless: x < y
, 
rabs: |x|
, 
rmul: a * b
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than: a < b
, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
Cauchy-Schwarz2-strict, 
rsum_nonneg, 
subtract_wf, 
rmul_wf, 
int_seg_wf, 
subtract-add-cancel, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
lelt_wf, 
square-nonneg, 
intformle_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
le_wf, 
real_wf, 
nat_wf, 
exists_wf, 
rneq_wf, 
iff_wf, 
rless_wf, 
rsum_wf, 
rabs_wf, 
rsqrt_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
equal_wf, 
square-rless-implies, 
rmul-nonneg-case1, 
rsqrt_nonneg, 
rnexp_wf, 
false_wf, 
rless_functionality, 
req_weakening, 
req_transitivity, 
rnexp-rmul, 
rmul_functionality, 
rsqrt-rnexp-2, 
rnexp2-nonneg, 
req_inversion, 
rabs-rnexp, 
rabs-of-nonneg, 
rnexp2, 
rnexp-rless, 
zero-rleq-rabs, 
less_than_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
independent_pairFormation, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addEquality, 
functionEquality, 
addLevel, 
impliesFunctionality, 
setEquality, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.
    (\mexists{}i,j:\mBbbN{}n.  x[j]  *  y[i]  \mneq{}  x[i]  *  y[j]
    \mLeftarrow{}{}\mRightarrow{}  |\mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n  -  1\}|  <  (rsqrt(\mSigma{}\{x[i]  *  x[i]  |  0\mleq{}i\mleq{}n  -  1\})
            *  rsqrt(\mSigma{}\{y[i]  *  y[i]  |  0\mleq{}i\mleq{}n  -  1\})))
Date html generated:
2017_10_03-AM-10_46_53
Last ObjectModification:
2017_06_19-PM-04_10_53
Theory : reals
Home
Index