Nuprl Lemma : Cauchy-Schwarz3-strict

n:ℕ. ∀x,y:ℕn ⟶ ℝ.
  (∃i,j:ℕn. x[j] y[i] ≠ x[i] y[j]
  ⇐⇒ {x[i] y[i] 0≤i≤1}| < (rsqrt(Σ{x[i] x[i] 0≤i≤1}) rsqrt(Σ{y[i] y[i] 0≤i≤1})))


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rsum: Σ{x[k] n≤k≤m} rneq: x ≠ y rless: x < y rabs: |x| rmul: b real: int_seg: {i..j-} nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: le: A ≤ B less_than: a < b pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] subtype_rel: A ⊆B less_than': less_than'(a;b) nat_plus: + squash: T true: True
Lemmas referenced :  Cauchy-Schwarz2-strict rsum_nonneg subtract_wf rmul_wf int_seg_wf subtract-add-cancel nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf square-nonneg intformle_wf itermSubtract_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_constant_lemma le_wf real_wf nat_wf exists_wf rneq_wf iff_wf rless_wf rsum_wf rabs_wf rsqrt_wf rleq_wf int-to-real_wf req_wf equal_wf square-rless-implies rmul-nonneg-case1 rsqrt_nonneg rnexp_wf false_wf rless_functionality req_weakening req_transitivity rnexp-rmul rmul_functionality rsqrt-rnexp-2 rnexp2-nonneg req_inversion rabs-rnexp rabs-of-nonneg rnexp2 rnexp-rless zero-rleq-rabs less_than_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination isectElimination natural_numberEquality setElimination rename because_Cache sqequalRule lambdaEquality applyEquality functionExtensionality dependent_set_memberEquality independent_pairFormation unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality addEquality functionEquality addLevel impliesFunctionality setEquality productEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.
    (\mexists{}i,j:\mBbbN{}n.  x[j]  *  y[i]  \mneq{}  x[i]  *  y[j]
    \mLeftarrow{}{}\mRightarrow{}  |\mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n  -  1\}|  <  (rsqrt(\mSigma{}\{x[i]  *  x[i]  |  0\mleq{}i\mleq{}n  -  1\})
            *  rsqrt(\mSigma{}\{y[i]  *  y[i]  |  0\mleq{}i\mleq{}n  -  1\})))



Date html generated: 2017_10_03-AM-10_46_53
Last ObjectModification: 2017_06_19-PM-04_10_53

Theory : reals


Home Index