Nuprl Lemma : Cauchy-Schwarz2-strict

n:ℕ. ∀x,y:ℕn ⟶ ℝ.
  (∃i,j:ℕn. x[j] y[i] ≠ x[i] y[j]
  ⇐⇒ {x[i] y[i] 0≤i≤1} * Σ{x[i] y[i] 0≤i≤1}) < {x[i] x[i] 0≤i≤1}
      * Σ{y[i] y[i] 0≤i≤1}))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rneq: x ≠ y rless: x < y rmul: b real: int_seg: {i..j-} nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} top: Top less_than: a < b squash: T less_than': less_than'(a;b) subtract: m true: True and: P ∧ Q iff: ⇐⇒ Q exists: x:A. B[x] int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q rless: x < y sq_exists: x:{A| B[x]} nat_plus: +
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base nat_wf subtract_wf int_seg_properties nat_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf exists_wf int_seg_wf rneq_wf rmul_wf nat_plus_properties itermAdd_wf int_term_value_add_lemma rless_wf int-to-real_wf real_wf rsum-empty Cauchy-Schwarz1-strict-iff decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination equalityTransitivity equalitySymmetry isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed productElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality applyEquality functionExtensionality imageElimination functionEquality dependent_set_memberEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.
    (\mexists{}i,j:\mBbbN{}n.  x[j]  *  y[i]  \mneq{}  x[i]  *  y[j]
    \mLeftarrow{}{}\mRightarrow{}  (\mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n  -  1\}  *  \mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n  -  1\})  <  (\mSigma{}\{x[i]  *  x[i]  |  0\mleq{}i\mleq{}n  -  1\}
            *  \mSigma{}\{y[i]  *  y[i]  |  0\mleq{}i\mleq{}n  -  1\}))



Date html generated: 2017_10_03-AM-09_04_40
Last ObjectModification: 2017_06_19-PM-04_00_20

Theory : reals


Home Index