Nuprl Lemma : Cauchy-Schwarz2-strict
∀n:ℕ. ∀x,y:ℕn ⟶ ℝ.
(∃i,j:ℕn. x[j] * y[i] ≠ x[i] * y[j]
⇐⇒ (Σ{x[i] * y[i] | 0≤i≤n - 1} * Σ{x[i] * y[i] | 0≤i≤n - 1}) < (Σ{x[i] * x[i] | 0≤i≤n - 1}
* Σ{y[i] * y[i] | 0≤i≤n - 1}))
Proof
Definitions occuring in Statement :
rsum: Σ{x[k] | n≤k≤m}
,
rneq: x ≠ y
,
rless: x < y
,
rmul: a * b
,
real: ℝ
,
int_seg: {i..j-}
,
nat: ℕ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
function: x:A ⟶ B[x]
,
subtract: n - m
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
nat: ℕ
,
decidable: Dec(P)
,
or: P ∨ Q
,
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
implies: P
⇒ Q
,
guard: {T}
,
top: Top
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
subtract: n - m
,
true: True
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
exists: ∃x:A. B[x]
,
int_seg: {i..j-}
,
ge: i ≥ j
,
lelt: i ≤ j < k
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
,
rless: x < y
,
sq_exists: ∃x:{A| B[x]}
,
nat_plus: ℕ+
Lemmas referenced :
decidable__equal_int,
subtype_base_sq,
int_subtype_base,
nat_wf,
subtract_wf,
int_seg_properties,
nat_properties,
full-omega-unsat,
intformand_wf,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
int_formula_prop_and_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
exists_wf,
int_seg_wf,
rneq_wf,
rmul_wf,
nat_plus_properties,
itermAdd_wf,
int_term_value_add_lemma,
rless_wf,
int-to-real_wf,
real_wf,
rsum-empty,
Cauchy-Schwarz1-strict-iff,
decidable__le,
intformnot_wf,
itermSubtract_wf,
intformeq_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
int_formula_prop_eq_lemma,
le_wf,
subtract-add-cancel
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
setElimination,
rename,
hypothesisEquality,
hypothesis,
natural_numberEquality,
unionElimination,
instantiate,
isectElimination,
cumulativity,
intEquality,
independent_isectElimination,
because_Cache,
independent_functionElimination,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
imageMemberEquality,
baseClosed,
productElimination,
approximateComputation,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
applyEquality,
functionExtensionality,
imageElimination,
functionEquality,
dependent_set_memberEquality
Latex:
\mforall{}n:\mBbbN{}. \mforall{}x,y:\mBbbN{}n {}\mrightarrow{} \mBbbR{}.
(\mexists{}i,j:\mBbbN{}n. x[j] * y[i] \mneq{} x[i] * y[j]
\mLeftarrow{}{}\mRightarrow{} (\mSigma{}\{x[i] * y[i] | 0\mleq{}i\mleq{}n - 1\} * \mSigma{}\{x[i] * y[i] | 0\mleq{}i\mleq{}n - 1\}) < (\mSigma{}\{x[i] * x[i] | 0\mleq{}i\mleq{}n - 1\}
* \mSigma{}\{y[i] * y[i] | 0\mleq{}i\mleq{}n - 1\}))
Date html generated:
2017_10_03-AM-09_04_40
Last ObjectModification:
2017_06_19-PM-04_00_20
Theory : reals
Home
Index