Step
*
of Lemma
Cauchy-Schwarz2-strict
∀n:ℕ. ∀x,y:ℕn ⟶ ℝ.
(∃i,j:ℕn. x[j] * y[i] ≠ x[i] * y[j]
⇐⇒ (Σ{x[i] * y[i] | 0≤i≤n - 1} * Σ{x[i] * y[i] | 0≤i≤n - 1}) < (Σ{x[i] * x[i] | 0≤i≤n - 1}
* Σ{y[i] * y[i] | 0≤i≤n - 1}))
BY
{ ((D 0 THENA Auto) THEN CaseNat 0 `n' ) }
1
1. n : ℕ
2. n = 0 ∈ ℤ
⊢ ∀x,y:ℕ0 ⟶ ℝ.
(∃i,j:ℕ0. x[j] * y[i] ≠ x[i] * y[j]
⇐⇒ (Σ{x[i] * y[i] | 0≤i≤0 - 1} * Σ{x[i] * y[i] | 0≤i≤0 - 1}) < (Σ{x[i] * x[i] | 0≤i≤0 - 1}
* Σ{y[i] * y[i] | 0≤i≤0 - 1}))
2
1. n : ℕ
2. ¬(n = 0 ∈ ℤ)
⊢ ∀x,y:ℕn ⟶ ℝ.
(∃i,j:ℕn. x[j] * y[i] ≠ x[i] * y[j]
⇐⇒ (Σ{x[i] * y[i] | 0≤i≤n - 1} * Σ{x[i] * y[i] | 0≤i≤n - 1}) < (Σ{x[i] * x[i] | 0≤i≤n - 1}
* Σ{y[i] * y[i] | 0≤i≤n - 1}))
Latex:
Latex:
\mforall{}n:\mBbbN{}. \mforall{}x,y:\mBbbN{}n {}\mrightarrow{} \mBbbR{}.
(\mexists{}i,j:\mBbbN{}n. x[j] * y[i] \mneq{} x[i] * y[j]
\mLeftarrow{}{}\mRightarrow{} (\mSigma{}\{x[i] * y[i] | 0\mleq{}i\mleq{}n - 1\} * \mSigma{}\{x[i] * y[i] | 0\mleq{}i\mleq{}n - 1\}) < (\mSigma{}\{x[i] * x[i] | 0\mleq{}i\mleq{}n - 1\}
* \mSigma{}\{y[i] * y[i] | 0\mleq{}i\mleq{}n - 1\}))
By
Latex:
((D 0 THENA Auto) THEN CaseNat 0 `n' )
Home
Index