Nuprl Lemma : rmul-nonneg-case1

[x,y:ℝ].  r0 ≤ (x y) supposing (r0 ≤ x) ∧ (r0 ≤ y)


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmul: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q or: P ∨ Q cand: c∧ B prop: rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B real:
Lemmas referenced :  rmul-nonneg and_wf rleq_wf int-to-real_wf less_than'_wf rsub_wf rmul_wf real_wf nat_plus_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality introduction independent_isectElimination productElimination inlFormation independent_pairFormation natural_numberEquality sqequalRule lambdaEquality dependent_functionElimination independent_pairEquality voidElimination applyEquality setElimination rename minusEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}[x,y:\mBbbR{}].    r0  \mleq{}  (x  *  y)  supposing  (r0  \mleq{}  x)  \mwedge{}  (r0  \mleq{}  y)



Date html generated: 2016_05_18-AM-07_33_39
Last ObjectModification: 2015_12_28-AM-00_55_00

Theory : reals


Home Index