Nuprl Lemma : rmul-nonneg-case1
∀[x,y:ℝ].  r0 ≤ (x * y) supposing (r0 ≤ x) ∧ (r0 ≤ y)
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
Lemmas referenced : 
rmul-nonneg, 
and_wf, 
rleq_wf, 
int-to-real_wf, 
less_than'_wf, 
rsub_wf, 
rmul_wf, 
real_wf, 
nat_plus_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
introduction, 
independent_isectElimination, 
productElimination, 
inlFormation, 
independent_pairFormation, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_pairEquality, 
voidElimination, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache
Latex:
\mforall{}[x,y:\mBbbR{}].    r0  \mleq{}  (x  *  y)  supposing  (r0  \mleq{}  x)  \mwedge{}  (r0  \mleq{}  y)
Date html generated:
2016_05_18-AM-07_33_39
Last ObjectModification:
2015_12_28-AM-00_55_00
Theory : reals
Home
Index