Step
*
of Lemma
Cauchy-Schwarz-strict
∀n:ℕ. ∀x,y:ℝ^n. (∃i,j:ℕn. (x j) * (y i) ≠ (x i) * (y j)
⇐⇒ |x⋅y| < (||x|| * ||y||))
BY
{ (InstLemma `Cauchy-Schwarz3-strict` []
THEN RepeatFor 3 ((ParallelLast' THENA Auto))
THEN Unfold `so_apply` -1
THEN Fold `dot-product` (-1)
THEN Fold `real-vec-norm` (-1)
THEN Trivial) }
Latex:
Latex:
\mforall{}n:\mBbbN{}. \mforall{}x,y:\mBbbR{}\^{}n. (\mexists{}i,j:\mBbbN{}n. (x j) * (y i) \mneq{} (x i) * (y j) \mLeftarrow{}{}\mRightarrow{} |x\mcdot{}y| < (||x|| * ||y||))
By
Latex:
(InstLemma `Cauchy-Schwarz3-strict` []
THEN RepeatFor 3 ((ParallelLast' THENA Auto))
THEN Unfold `so\_apply` -1
THEN Fold `dot-product` (-1)
THEN Fold `real-vec-norm` (-1)
THEN Trivial)
Home
Index