Step
*
1
1
1
1
1
1
of Lemma
Minkowski-equality
1. n : ℕ
2. x : ℝ^n
3. y : ℝ^n
4. r0 < ||y||
5. ||x + y|| = (||x|| + ||y||)
6. r0 < ||y||^2
7. (r(2) * ||x|| * ||y||) = (r(2) * x⋅y)
8. x⋅y = (||x|| * ||y||)
9. |x⋅y| = (||x|| * ||y||)
10. req-vec(n;x;(x⋅y/||y||^2)*y)
11. r0 ≤ (x⋅y/||y||^2)
12. req-vec(n;x;(x⋅y/||y||^2)*y)
13. r0 < ||x||
⊢ r0 < (||x|| * ||y||)
BY
{ (BLemma `rmul-is-positive` THEN Auto) }
Latex:
Latex:
1. n : \mBbbN{}
2. x : \mBbbR{}\^{}n
3. y : \mBbbR{}\^{}n
4. r0 < ||y||
5. ||x + y|| = (||x|| + ||y||)
6. r0 < ||y||\^{}2
7. (r(2) * ||x|| * ||y||) = (r(2) * x\mcdot{}y)
8. x\mcdot{}y = (||x|| * ||y||)
9. |x\mcdot{}y| = (||x|| * ||y||)
10. req-vec(n;x;(x\mcdot{}y/||y||\^{}2)*y)
11. r0 \mleq{} (x\mcdot{}y/||y||\^{}2)
12. req-vec(n;x;(x\mcdot{}y/||y||\^{}2)*y)
13. r0 < ||x||
\mvdash{} r0 < (||x|| * ||y||)
By
Latex:
(BLemma `rmul-is-positive` THEN Auto)
Home
Index