Step
*
of Lemma
Minkowski-inequality2
∀[n:ℕ]. ∀[x,y:ℝ^n]. (||x - y|| ≤ (||x|| + ||y||))
BY
{ (Auto
THEN (InstLemma `Minkowski-inequality1` [⌜n⌝;⌜x⌝;⌜r(-1)*y⌝]⋅ THENA Auto)
THEN (RWO "real-vec-norm-mul" (-1)⋅ THENA Auto)
THEN (RWO "rabs-int" (-1) THENA Auto)
THEN RepUR ``absval`` -1
THEN nRNorm (-1)
THEN (RWO "-1<" 0 THENA Auto)) }
1
1. n : ℕ
2. x : ℝ^n
3. y : ℝ^n
4. ||x + r(-1)*y|| ≤ (||x|| + ||y||)
⊢ ||x - y|| ≤ ||x + r(-1)*y||
Latex:
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[x,y:\mBbbR{}\^{}n]. (||x - y|| \mleq{} (||x|| + ||y||))
By
Latex:
(Auto
THEN (InstLemma `Minkowski-inequality1` [\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}r(-1)*y\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RWO "real-vec-norm-mul" (-1)\mcdot{} THENA Auto)
THEN (RWO "rabs-int" (-1) THENA Auto)
THEN RepUR ``absval`` -1
THEN nRNorm (-1)
THEN (RWO "-1<" 0 THENA Auto))
Home
Index