Nuprl Lemma : Minkowski-inequality2
∀[n:ℕ]. ∀[x,y:ℝ^n].  (||x - y|| ≤ (||x|| + ||y||))
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||, 
real-vec-sub: X - Y, 
real-vec: ℝ^n, 
rleq: x ≤ y, 
radd: a + b, 
nat: ℕ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
all: ∀x:A. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
subtype_rel: A ⊆r B, 
real: ℝ, 
prop: ℙ, 
true: True, 
absval: |i|, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
real-vec-mul: a*X, 
real-vec-add: X + Y, 
real-vec-sub: X - Y, 
req-vec: req-vec(n;x;y), 
nat: ℕ, 
real-vec: ℝ^n, 
rsub: x - y
Lemmas referenced : 
rminus-as-rmul, 
req_inversion, 
req_functionality, 
rminus_wf, 
int_seg_wf, 
real-vec-norm_functionality, 
rleq_weakening, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
rmul-one-both, 
iff_weakening_equal, 
rabs-int, 
true_wf, 
squash_wf, 
rleq_wf, 
real-vec-norm-mul, 
radd_functionality, 
req_weakening, 
rleq_functionality, 
rabs_wf, 
rmul_wf, 
real-vec-add_wf, 
nat_wf, 
real-vec_wf, 
nat_plus_wf, 
real_wf, 
real-vec-sub_wf, 
real-vec-norm_wf, 
radd_wf, 
rsub_wf, 
less_than'_wf, 
int-to-real_wf, 
real-vec-mul_wf, 
Minkowski-inequality1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
minusEquality, 
natural_numberEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
callbyvalueReduce, 
sqleReflexivity, 
independent_isectElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination, 
lambdaFormation
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (||x  -  y||  \mleq{}  (||x||  +  ||y||))
Date html generated:
2016_05_18-AM-09_50_29
Last ObjectModification:
2016_01_17-AM-02_51_51
Theory : reals
Home
Index