Nuprl Lemma : rabs-int
∀[a:ℤ]. (|r(a)| = r(|a|) ∈ ℝ)
Proof
Definitions occuring in Statement : 
rabs: |x|
, 
int-to-real: r(n)
, 
real: ℝ
, 
absval: |i|
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
real: ℝ
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
rabs: |x|
, 
int-to-real: r(n)
, 
not: ¬A
, 
false: False
, 
le: A ≤ B
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
real-regular, 
rabs_wf, 
int-to-real_wf, 
less_than_wf, 
regular-int-seq_wf, 
nat_plus_wf, 
nat_plus_subtype_nat, 
le_wf, 
false_wf, 
absval_pos, 
iff_weakening_equal, 
nat_wf, 
absval_wf, 
absval_mul, 
true_wf, 
squash_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
dependent_set_memberEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
intEquality, 
functionExtensionality, 
lambdaFormation, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
because_Cache, 
rename, 
setElimination, 
multiplyEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality
Latex:
\mforall{}[a:\mBbbZ{}].  (|r(a)|  =  r(|a|))
Date html generated:
2017_10_03-AM-08_28_57
Last ObjectModification:
2017_09_20-PM-05_36_31
Theory : reals
Home
Index