Nuprl Lemma : rabs-int

[a:ℤ]. (|r(a)| r(|a|) ∈ ℝ)


Proof




Definitions occuring in Statement :  rabs: |x| int-to-real: r(n) real: absval: |i| uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] real: member: t ∈ T nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: rabs: |x| int-to-real: r(n) not: ¬A false: False le: A ≤ B implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a nat: subtype_rel: A ⊆B
Lemmas referenced :  real-regular rabs_wf int-to-real_wf less_than_wf regular-int-seq_wf nat_plus_wf nat_plus_subtype_nat le_wf false_wf absval_pos iff_weakening_equal nat_wf absval_wf absval_mul true_wf squash_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut dependent_set_memberEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed intEquality functionExtensionality lambdaFormation independent_functionElimination productElimination independent_isectElimination because_Cache rename setElimination multiplyEquality universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality

Latex:
\mforall{}[a:\mBbbZ{}].  (|r(a)|  =  r(|a|))



Date html generated: 2017_10_03-AM-08_28_57
Last ObjectModification: 2017_09_20-PM-05_36_31

Theory : reals


Home Index