Step
*
1
2
1
of Lemma
Raabe-lemma
.....assertion.....
1. y : ℕ ⟶ ℝ
2. c : ℝ
3. r0 < c
4. N : ℕ+
5. ∀n:{N...}. (r0 < y[n])
6. ∀n:{N...}. (c ≤ (r(n) * ((y[n]/y[n + 1]) - r1)))
7. k : ℕ+
8. ∀n:{N...}. y[n] ≠ r0
9. ∀d:ℕ. ((r1 + (c * Σ{(r1/r(k)) | N≤k≤N + (d - 1)})) ≤ (y[N]/y[N + d]))
⊢ ∃d:ℕ. ((y[N] * r(k)/c) ≤ Σ{(r1/r(k)) | N≤k≤N + (d - 1)})
BY
{ InstLemma `harmonic-series-diverges-to-infinity` [] }
1
1. y : ℕ ⟶ ℝ
2. c : ℝ
3. r0 < c
4. N : ℕ+
5. ∀n:{N...}. (r0 < y[n])
6. ∀n:{N...}. (c ≤ (r(n) * ((y[n]/y[n + 1]) - r1)))
7. k : ℕ+
8. ∀n:{N...}. y[n] ≠ r0
9. ∀d:ℕ. ((r1 + (c * Σ{(r1/r(k)) | N≤k≤N + (d - 1)})) ≤ (y[N]/y[N + d]))
10. ∀n:ℕ. ((r1 + (r(n)/r(2))) ≤ Σ{(r1/r(i)) | 1≤i≤2^n})
⊢ ∃d:ℕ. ((y[N] * r(k)/c) ≤ Σ{(r1/r(k)) | N≤k≤N + (d - 1)})
Latex:
Latex:
.....assertion.....
1. y : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. c : \mBbbR{}
3. r0 < c
4. N : \mBbbN{}\msupplus{}
5. \mforall{}n:\{N...\}. (r0 < y[n])
6. \mforall{}n:\{N...\}. (c \mleq{} (r(n) * ((y[n]/y[n + 1]) - r1)))
7. k : \mBbbN{}\msupplus{}
8. \mforall{}n:\{N...\}. y[n] \mneq{} r0
9. \mforall{}d:\mBbbN{}. ((r1 + (c * \mSigma{}\{(r1/r(k)) | N\mleq{}k\mleq{}N + (d - 1)\})) \mleq{} (y[N]/y[N + d]))
\mvdash{} \mexists{}d:\mBbbN{}. ((y[N] * r(k)/c) \mleq{} \mSigma{}\{(r1/r(k)) | N\mleq{}k\mleq{}N + (d - 1)\})
By
Latex:
InstLemma `harmonic-series-diverges-to-infinity` []
Home
Index