Step
*
of Lemma
Taylor-series-converges-everywhere
∀a:ℝ. ∀F:ℕ ⟶ ℝ ⟶ ℝ.
  ((∀k:ℕ. ∀x,y:ℝ.  ((x = y) 
⇒ (F[k;x] = F[k;y])))
  
⇒ infinite-deriv-seq((-∞, ∞);i,x.F[i;x])
  
⇒ (∀r:{r:ℝ| r0 ≤ r} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (-∞, ∞))
  
⇒ lim k→∞.Σ{(F[i;a]/r((i)!)) * x - a^i | 0≤i≤k} = λx.F[0;x] for x ∈ (-∞, ∞))
BY
{ (Auto
   THEN (D 0 THENA Auto)
   THEN D -1
   THEN All (RepUR ``i-approx``)
   THEN (Assert ⌜∃t:{t:ℝ| r0 < t} . [r(-m), r(m)] ⊆ (a - t, a + t) ⌝⋅
   THENM ((D -1 THEN InstLemma `Taylor-series-converges` [⌜a⌝;⌜t⌝;⌜F⌝]⋅) THENA Try (Complete (Auto)))
   )) }
1
.....assertion..... 
1. a : ℝ
2. F : ℕ ⟶ ℝ ⟶ ℝ
3. ∀k:ℕ. ∀x,y:ℝ.  ((x = y) 
⇒ (F[k;x] = F[k;y]))
4. infinite-deriv-seq((-∞, ∞);i,x.F[i;x])
5. ∀r:{r:ℝ| r0 ≤ r} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (-∞, ∞)
6. m : ℕ+
7. [%4] : icompact([r(-m), r(m)])
⊢ ∃t:{t:ℝ| r0 < t} . [r(-m), r(m)] ⊆ (a - t, a + t) 
2
.....antecedent..... 
1. a : ℝ
2. F : ℕ ⟶ ℝ ⟶ ℝ
3. ∀k:ℕ. ∀x,y:ℝ.  ((x = y) 
⇒ (F[k;x] = F[k;y]))
4. infinite-deriv-seq((-∞, ∞);i,x.F[i;x])
5. ∀r:{r:ℝ| r0 ≤ r} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (-∞, ∞)
6. m : ℕ+
7. [%4] : icompact([r(-m), r(m)])
8. t : {t:ℝ| r0 < t} 
9. [r(-m), r(m)] ⊆ (a - t, a + t) 
⊢ infinite-deriv-seq((a - t, a + t);i,x.F[i;x])
3
.....antecedent..... 
1. a : ℝ
2. F : ℕ ⟶ ℝ ⟶ ℝ
3. ∀k:ℕ. ∀x,y:ℝ.  ((x = y) 
⇒ (F[k;x] = F[k;y]))
4. infinite-deriv-seq((-∞, ∞);i,x.F[i;x])
5. ∀r:{r:ℝ| r0 ≤ r} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (-∞, ∞)
6. m : ℕ+
7. [%4] : icompact([r(-m), r(m)])
8. t : {t:ℝ| r0 < t} 
9. [r(-m), r(m)] ⊆ (a - t, a + t) 
⊢ ∀r:{r:ℝ| (r0 ≤ r) ∧ (r < t)} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (a - t, a + t)
4
1. a : ℝ
2. F : ℕ ⟶ ℝ ⟶ ℝ
3. ∀k:ℕ. ∀x,y:ℝ.  ((x = y) 
⇒ (F[k;x] = F[k;y]))
4. infinite-deriv-seq((-∞, ∞);i,x.F[i;x])
5. ∀r:{r:ℝ| r0 ≤ r} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (-∞, ∞)
6. m : ℕ+
7. [%4] : icompact([r(-m), r(m)])
8. t : {t:ℝ| r0 < t} 
9. [r(-m), r(m)] ⊆ (a - t, a + t) 
10. lim k→∞.Σ{(F[i;a]/r((i)!)) * x - a^i | 0≤i≤k} = λx.F[0;x] for x ∈ (a - t, a + t)
⊢ ∀k@0:ℕ+
    ∃N:ℕ+
     ∀x:{x:ℝ| (r(-m) ≤ x) ∧ (x ≤ r(m))} . ∀k:{N...}.  (|Σ{(F[i;a]/r((i)!)) * x - a^i | 0≤i≤k} - F[0;x]| ≤ (r1/r(k@0)))
Latex:
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}F:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}k:\mBbbN{}.  \mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y])))
    {}\mRightarrow{}  infinite-deriv-seq((-\minfty{},  \minfty{});i,x.F[i;x])
    {}\mRightarrow{}  (\mforall{}r:\{r:\mBbbR{}|  r0  \mleq{}  r\}  .  lim  k\mrightarrow{}\minfty{}.r\^{}k  *  (F[k  +  1;x]/r((k)!))  =  \mlambda{}x.r0  for  x  \mmember{}  (-\minfty{},  \minfty{}))
    {}\mRightarrow{}  lim  k\mrightarrow{}\minfty{}.\mSigma{}\{(F[i;a]/r((i)!))  *  x  -  a\^{}i  |  0\mleq{}i\mleq{}k\}  =  \mlambda{}x.F[0;x]  for  x  \mmember{}  (-\minfty{},  \minfty{}))
By
Latex:
(Auto
  THEN  (D  0  THENA  Auto)
  THEN  D  -1
  THEN  All  (RepUR  ``i-approx``)
  THEN  (Assert  \mkleeneopen{}\mexists{}t:\{t:\mBbbR{}|  r0  <  t\}  .  [r(-m),  r(m)]  \msubseteq{}  (a  -  t,  a  +  t)  \mkleeneclose{}\mcdot{}
  THENM  ((D  -1  THEN  InstLemma  `Taylor-series-converges`  [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}t\mkleeneclose{};\mkleeneopen{}F\mkleeneclose{}]\mcdot{})  THENA  Try  (Complete  (Auto)))
  ))
Home
Index