Step
*
1
2
2
1
1
of Lemma
Taylor-series-converges-everywhere
1. a : ℝ
2. F : ℕ ⟶ ℝ ⟶ ℝ
3. ∀k:ℕ. ∀x,y:ℝ. ((x = y)
⇒ (F[k;x] = F[k;y]))
4. infinite-deriv-seq((-∞, ∞);i,x.F[i;x])
5. ∀r:{r:ℝ| r0 ≤ r} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (-∞, ∞)
6. m : ℕ+
7. [%4] : icompact([r(-m), r(m)])
8. -(a) ≤ |a|
9. a ≤ |a|
10. r(-m) ≤ r(m)
⊢ (|a| - r(m + 1) + |a|) < r(-m)
BY
{ (nRNorm 0 THEN Auto) }
Latex:
Latex:
1. a : \mBbbR{}
2. F : \mBbbN{} {}\mrightarrow{} \mBbbR{} {}\mrightarrow{} \mBbbR{}
3. \mforall{}k:\mBbbN{}. \mforall{}x,y:\mBbbR{}. ((x = y) {}\mRightarrow{} (F[k;x] = F[k;y]))
4. infinite-deriv-seq((-\minfty{}, \minfty{});i,x.F[i;x])
5. \mforall{}r:\{r:\mBbbR{}| r0 \mleq{} r\} . lim k\mrightarrow{}\minfty{}.r\^{}k * (F[k + 1;x]/r((k)!)) = \mlambda{}x.r0 for x \mmember{} (-\minfty{}, \minfty{})
6. m : \mBbbN{}\msupplus{}
7. [\%4] : icompact([r(-m), r(m)])
8. -(a) \mleq{} |a|
9. a \mleq{} |a|
10. r(-m) \mleq{} r(m)
\mvdash{} (|a| - r(m + 1) + |a|) < r(-m)
By
Latex:
(nRNorm 0 THEN Auto)
Home
Index