Nuprl Lemma : VesleyAxiom_wf

VesleyAxiom ∈ ℙ'


Proof




Definitions occuring in Statement :  VesleyAxiom: VesleyAxiom prop: member: t ∈ T
Definitions unfolded in proof :  VesleyAxiom: VesleyAxiom member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] implies:  Q all: x:A. B[x] so_apply: x[s]
Lemmas referenced :  all_wf real_wf dense-in-interval_wf riiint_wf i-member_wf not_wf req_wf bool_wf exists_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis applyEquality lambdaEquality cumulativity hypothesisEquality universeEquality lambdaFormation setElimination rename functionExtensionality setEquality because_Cache dependent_set_memberEquality

Latex:
VesleyAxiom  \mmember{}  \mBbbP{}'



Date html generated: 2017_10_03-AM-10_15_16
Last ObjectModification: 2017_09_13-PM-03_55_22

Theory : reals


Home Index