Nuprl Lemma : VesleyAxiom_wf
VesleyAxiom ∈ ℙ'
Proof
Definitions occuring in Statement : 
VesleyAxiom: VesleyAxiom
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
VesleyAxiom: VesleyAxiom
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
real_wf, 
dense-in-interval_wf, 
riiint_wf, 
i-member_wf, 
not_wf, 
req_wf, 
bool_wf, 
exists_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
lambdaFormation, 
setElimination, 
rename, 
functionExtensionality, 
setEquality, 
because_Cache, 
dependent_set_memberEquality
Latex:
VesleyAxiom  \mmember{}  \mBbbP{}'
Date html generated:
2017_10_03-AM-10_15_16
Last ObjectModification:
2017_09_13-PM-03_55_22
Theory : reals
Home
Index