Nuprl Lemma : WCPR_wf

[F:ℝ ⟶ 𝔹]. ∀[x:ℝ]. ∀[G:n:ℕ+ ⟶ {y:ℝy ∈ (ℕ+n ⟶ ℤ)} ].  (WCPR(F;x;G) ∈ ℕ+)


Proof




Definitions occuring in Statement :  WCPR: WCPR(F;x;G) real: int_seg: {i..j-} nat_plus: + bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T WCPR: WCPR(F;x;G) all: x:A. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: real: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a le: A ≤ B false: False not: ¬A implies:  Q
Lemmas referenced :  WCP_wf real_wf regularize-k-regular less_than_wf regularize_wf nat_plus_wf regular-int-seq_wf subtype_rel_sets equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat_plus false_wf subtype_rel_self bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin lambdaEquality applyEquality functionExtensionality hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed isectElimination functionEquality because_Cache intEquality setElimination rename independent_isectElimination lambdaFormation setEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[F:\mBbbR{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:\mBbbR{}].  \mforall{}[G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{y:\mBbbR{}|  x  =  y\}  ].    (WCPR(F;x;G)  \mmember{}  \mBbbN{}\msupplus{})



Date html generated: 2017_10_03-AM-10_06_22
Last ObjectModification: 2017_09_12-AM-09_58_33

Theory : reals


Home Index