Nuprl Lemma : WCP_wf

F:(ℕ+ ⟶ ℤ) ⟶ 𝔹. ∀f:ℕ+ ⟶ ℤ. ∀G:n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤg ∈ (ℕ+n ⟶ ℤ)} .  (WCP(F;f;G) ∈ {n:ℕ+(G n)} )


Proof




Definitions occuring in Statement :  WCP: WCP(F;f;G) int_seg: {i..j-} nat_plus: + bool: 𝔹 all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat_plus: + subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: exists: x:A. B[x] pi1: fst(t) weak-continuity-principle-nat+-int-bool-ext WCP: WCP(F;f;G)
Lemmas referenced :  weak-continuity-principle-nat+-int-bool-ext set_wf nat_plus_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat_plus false_wf subtype_rel_self bool_wf all_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin instantiate extract_by_obid hypothesis functionEquality because_Cache introduction sqequalHypSubstitution isectElimination intEquality sqequalRule lambdaEquality natural_numberEquality setElimination rename hypothesisEquality applyEquality independent_isectElimination independent_pairFormation functionExtensionality setEquality productElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}F:(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  f  =  g\}  .    (WCP(F;f;G)  \mmember{}  \{n:\mBbbN{}\msupplus{}|  F  f  =  F  (G  n)\}  \000C)



Date html generated: 2017_09_29-PM-06_06_30
Last ObjectModification: 2017_07_08-PM-01_12_36

Theory : continuity


Home Index