Step
*
1
1
1
of Lemma
bdd-diff-regular-int-seq
1. k : ℕ
2. b : ℕ
3. f : ℕ+ ⟶ ℤ
4. ∀n,m:ℕ+. (|(m * (f n)) - n * (f m)| ≤ ((2 * k) * (n + m)))
5. g : ℕ+ ⟶ ℤ
6. ∀n:ℕ+. (|(f n) - g n| ≤ (2 * b))
7. n : ℕ+@i
8. m : ℕ+@i
⊢ ((|m| * |(g n) - f n|) + ((2 * k) * (n + m)) + (|n| * |(f m) - g m|)) ≤ ((2 * (k + b)) * (n + m))
BY
{ (Subst' |(g n) - f n| ~ |(f n) - g n| 0 THENM (RWO "6" 0 THENA Auto)) }
1
.....equality.....
1. k : ℕ
2. b : ℕ
3. f : ℕ+ ⟶ ℤ
4. ∀n,m:ℕ+. (|(m * (f n)) - n * (f m)| ≤ ((2 * k) * (n + m)))
5. g : ℕ+ ⟶ ℤ
6. ∀n:ℕ+. (|(f n) - g n| ≤ (2 * b))
7. n : ℕ+@i
8. m : ℕ+@i
⊢ |(g n) - f n| ~ |(f n) - g n|
2
1. k : ℕ
2. b : ℕ
3. f : ℕ+ ⟶ ℤ
4. ∀n,m:ℕ+. (|(m * (f n)) - n * (f m)| ≤ ((2 * k) * (n + m)))
5. g : ℕ+ ⟶ ℤ
6. ∀n:ℕ+. (|(f n) - g n| ≤ (2 * b))
7. n : ℕ+@i
8. m : ℕ+@i
⊢ ((|m| * 2 * b) + ((2 * k) * (n + m)) + (|n| * 2 * b)) ≤ ((2 * (k + b)) * (n + m))
Latex:
Latex:
1. k : \mBbbN{}
2. b : \mBbbN{}
3. f : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
4. \mforall{}n,m:\mBbbN{}\msupplus{}. (|(m * (f n)) - n * (f m)| \mleq{} ((2 * k) * (n + m)))
5. g : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
6. \mforall{}n:\mBbbN{}\msupplus{}. (|(f n) - g n| \mleq{} (2 * b))
7. n : \mBbbN{}\msupplus{}@i
8. m : \mBbbN{}\msupplus{}@i
\mvdash{} ((|m| * |(g n) - f n|) + ((2 * k) * (n + m)) + (|n| * |(f m) - g m|)) \mleq{} ((2 * (k + b)) * (n + m))
By
Latex:
(Subst' |(g n) - f n| \msim{} |(f n) - g n| 0 THENM (RWO "6" 0 THENA Auto))
Home
Index