Nuprl Lemma : bdd-diff_inversion
∀a,b:ℕ+ ⟶ ℤ.  (bdd-diff(a;b) ⇒ bdd-diff(b;a))
Proof
Definitions occuring in Statement : 
bdd-diff: bdd-diff(f;g), 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
and: P ∧ Q, 
sym: Sym(T;x,y.E[x; y])
Lemmas referenced : 
bdd-diff-equiv, 
bdd-diff_wf, 
nat_plus_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
intEquality, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}a,b:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (bdd-diff(a;b)  {}\mRightarrow{}  bdd-diff(b;a))
Date html generated:
2016_05_18-AM-06_46_27
Last ObjectModification:
2015_12_28-AM-00_24_45
Theory : reals
Home
Index