Nuprl Lemma : bdd-diff_inversion

a,b:ℕ+ ⟶ ℤ.  (bdd-diff(a;b)  bdd-diff(b;a))


Proof




Definitions occuring in Statement :  bdd-diff: bdd-diff(f;g) nat_plus: + all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q sym: Sym(T;x,y.E[x; y])
Lemmas referenced :  bdd-diff-equiv bdd-diff_wf nat_plus_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality intEquality productElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}a,b:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (bdd-diff(a;b)  {}\mRightarrow{}  bdd-diff(b;a))



Date html generated: 2016_05_18-AM-06_46_27
Last ObjectModification: 2015_12_28-AM-00_24_45

Theory : reals


Home Index