Step
*
2
1
1
of Lemma
cantor-interval-inclusion
.....basecase.....
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. f : ℕ ⟶ 𝔹
5. ∀[n:ℕ]
(((fst(cantor-interval(a;b;f;n))) ≤ (fst(cantor-interval(a;b;f;n + 1))))
∧ ((fst(cantor-interval(a;b;f;n + 1))) ≤ (snd(cantor-interval(a;b;f;n + 1))))
∧ ((snd(cantor-interval(a;b;f;n + 1))) ≤ (snd(cantor-interval(a;b;f;n)))))
6. n : ℕ
7. d : ℤ
⊢ ((fst(cantor-interval(a;b;f;n))) ≤ (fst(cantor-interval(a;b;f;n + 0))))
∧ ((fst(cantor-interval(a;b;f;n + 0))) ≤ (snd(cantor-interval(a;b;f;n + 0))))
∧ ((snd(cantor-interval(a;b;f;n + 0))) ≤ (snd(cantor-interval(a;b;f;n))))
BY
{ ((Subst' n + 0 ~ n 0 THENA Auto) THEN Auto) }
1
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. f : ℕ ⟶ 𝔹
5. ∀[n:ℕ]
(((fst(cantor-interval(a;b;f;n))) ≤ (fst(cantor-interval(a;b;f;n + 1))))
∧ ((fst(cantor-interval(a;b;f;n + 1))) ≤ (snd(cantor-interval(a;b;f;n + 1))))
∧ ((snd(cantor-interval(a;b;f;n + 1))) ≤ (snd(cantor-interval(a;b;f;n)))))
6. n : ℕ
7. d : ℤ
8. (fst(cantor-interval(a;b;f;n))) ≤ (fst(cantor-interval(a;b;f;n)))
⊢ (fst(cantor-interval(a;b;f;n))) ≤ (snd(cantor-interval(a;b;f;n)))
Latex:
Latex:
.....basecase.....
1. a : \mBbbR{}
2. b : \mBbbR{}
3. a \mleq{} b
4. f : \mBbbN{} {}\mrightarrow{} \mBbbB{}
5. \mforall{}[n:\mBbbN{}]
(((fst(cantor-interval(a;b;f;n))) \mleq{} (fst(cantor-interval(a;b;f;n + 1))))
\mwedge{} ((fst(cantor-interval(a;b;f;n + 1))) \mleq{} (snd(cantor-interval(a;b;f;n + 1))))
\mwedge{} ((snd(cantor-interval(a;b;f;n + 1))) \mleq{} (snd(cantor-interval(a;b;f;n)))))
6. n : \mBbbN{}
7. d : \mBbbZ{}
\mvdash{} ((fst(cantor-interval(a;b;f;n))) \mleq{} (fst(cantor-interval(a;b;f;n + 0))))
\mwedge{} ((fst(cantor-interval(a;b;f;n + 0))) \mleq{} (snd(cantor-interval(a;b;f;n + 0))))
\mwedge{} ((snd(cantor-interval(a;b;f;n + 0))) \mleq{} (snd(cantor-interval(a;b;f;n))))
By
Latex:
((Subst' n + 0 \msim{} n 0 THENA Auto) THEN Auto)
Home
Index