Nuprl Lemma : cantor-interval-inclusion

[a,b:ℝ].
  ∀[f:ℕ ⟶ 𝔹]. ∀[n:ℕ]. ∀[m:{n...}].
    (((fst(cantor-interval(a;b;f;n))) ≤ (fst(cantor-interval(a;b;f;m))))
    ∧ ((fst(cantor-interval(a;b;f;m))) ≤ (snd(cantor-interval(a;b;f;m))))
    ∧ ((snd(cantor-interval(a;b;f;m))) ≤ (snd(cantor-interval(a;b;f;n))))) 
  supposing a ≤ b


Proof




Definitions occuring in Statement :  cantor-interval: cantor-interval(a;b;f;n) rleq: x ≤ y real: int_upper: {i...} nat: bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T prop: and: P ∧ Q rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False nat: nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b) cantor-interval: cantor-interval(a;b;f;n) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  subtract: m pi1: fst(t) pi2: snd(t) cand: c∧ B rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T true: True rev_uimplies: rev_uimplies(P;Q) int_nzero: -o rge: x ≥ y real: int_upper: {i...}
Lemmas referenced :  nat_wf bool_wf rleq_wf real_wf less_than'_wf rsub_wf cantor-interval_wf nat_plus_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf subtype_rel_dep_function int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self pi1_wf_top equal_wf nat_plus_wf pi2_wf primrec-unroll eq_int_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int subtract_wf add-subtract-cancel add-associates add-swap add-commutes zero-add assert_elim int_subtype_base not_assert_elim btrue_neq_bfalse cantor-interval-rleq rmul_preserves_rleq rdiv_wf rless-int rleq_weakening_equal rmul_wf int-to-real_wf radd_wf int-rmul_wf rless_wf int-rdiv_wf equal-wf-base true_wf nequal_wf rleq_functionality req_weakening int-rdiv-req uiff_transitivity rmul-rdiv-cancel2 rmul_comm radd_comm radd_functionality int-rmul-req rleq_functionality_wrt_implies radd_functionality_wrt_rleq req_transitivity req_inversion rmul-identity1 rmul-distrib2 rmul_functionality radd-int rmul_preserves_rleq2 rleq-int int_upper_subtype_nat int_upper_wf intformless_wf int_formula_prop_less_lemma ge_wf less_than_wf less_than_transitivity1 less_than_irreflexivity itermSubtract_wf int_term_value_subtract_lemma add-zero rleq_transitivity decidable__equal_int squash_wf and_wf subtype_rel_product top_wf int_upper_properties trivial-int-eq1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut functionEquality introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination voidElimination applyEquality because_Cache dependent_set_memberEquality addEquality setElimination rename natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll lambdaFormation productEquality equalityTransitivity equalitySymmetry independent_functionElimination minusEquality axiomEquality equalityElimination promote_hyp instantiate cumulativity functionExtensionality hyp_replacement applyLambdaEquality inrFormation imageMemberEquality baseClosed addLevel intWeakElimination imageElimination

Latex:
\mforall{}[a,b:\mBbbR{}].
    \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\{n...\}].
        (((fst(cantor-interval(a;b;f;n)))  \mleq{}  (fst(cantor-interval(a;b;f;m))))
        \mwedge{}  ((fst(cantor-interval(a;b;f;m)))  \mleq{}  (snd(cantor-interval(a;b;f;m))))
        \mwedge{}  ((snd(cantor-interval(a;b;f;m)))  \mleq{}  (snd(cantor-interval(a;b;f;n))))) 
    supposing  a  \mleq{}  b



Date html generated: 2017_10_03-AM-09_51_27
Last ObjectModification: 2017_07_28-AM-08_01_36

Theory : reals


Home Index