Nuprl Lemma : int-rmul-req
∀[k:ℤ]. ∀[a:ℝ].  (k * a = (r(k) * a))
Proof
Definitions occuring in Statement : 
int-rmul: k1 * a
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
int-to-real: r(n)
, 
reg-seq-mul: reg-seq-mul(x;y)
, 
int-rmul: k1 * a
, 
bdd-diff: bdd-diff(f;g)
, 
has-value: (a)↓
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
less_than: a < b
, 
true: True
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
nequal: a ≠ b ∈ T 
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
int_nzero: ℤ-o
, 
regular-int-seq: k-regular-seq(f)
, 
sq_stable: SqStable(P)
, 
subtract: n - m
, 
rev_uimplies: rev_uimplies(P;Q)
, 
absval: |i|
Lemmas referenced : 
req-iff-bdd-diff, 
int-rmul_wf, 
rmul_wf, 
int-to-real_wf, 
req_witness, 
real_wf, 
reg-seq-mul_wf, 
value-type-has-value, 
int-value-type, 
absval_wf, 
mul-non-neg1, 
false_wf, 
decidable__le, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
le_wf, 
nat_plus_wf, 
all_wf, 
subtract_wf, 
less_than_wf, 
mul_nat_plus, 
nat_plus_properties, 
intformeq_wf, 
itermMultiply_wf, 
intformless_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_less_lemma, 
equal-wf-base, 
bdd-diff_functionality, 
bdd-diff_weakening, 
rmul-bdd-diff-reg-seq-mul, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
top_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
iff_weakening_equal, 
subtype_rel_self, 
absval_mul, 
true_wf, 
squash_wf, 
equal-wf-T-base, 
absval_nat_plus, 
nat_wf, 
int_term_value_minus_lemma, 
itermMinus_wf, 
decidable__lt, 
mul_cancel_in_le, 
nequal_wf, 
div-cancel2, 
decidable__equal_int, 
int_subtype_base, 
sq_stable__le, 
mul-associates, 
mul-distributes, 
minus-one-mul, 
mul-swap, 
one-mul, 
add-commutes, 
absval_sym, 
add_functionality_wrt_eq, 
minus-add, 
mul-commutes, 
le_functionality, 
le_weakening, 
absval_unfold, 
add-is-int-iff, 
set_subtype_base, 
multiply-is-int-iff, 
nat_plus_subtype_nat, 
absval_pos, 
zero-add, 
zero-mul, 
zero-div-rem
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
intEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
callbyvalueReduce, 
dependent_pairFormation, 
dependent_set_memberEquality, 
multiplyEquality, 
natural_numberEquality, 
addEquality, 
independent_pairFormation, 
lambdaFormation, 
dependent_functionElimination, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
approximateComputation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
lessCases, 
baseClosed, 
imageMemberEquality, 
axiomSqEquality, 
imageElimination, 
minusEquality, 
divideEquality, 
baseApply, 
closedConclusion, 
cumulativity, 
instantiate, 
promote_hyp, 
equalityElimination, 
universeEquality
Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[a:\mBbbR{}].    (k  *  a  =  (r(k)  *  a))
Date html generated:
2019_10_29-AM-09_32_26
Last ObjectModification:
2018_08_23-PM-01_45_09
Theory : reals
Home
Index