Nuprl Lemma : int-rmul-req

[k:ℤ]. ∀[a:ℝ].  (k (r(k) a))


Proof




Definitions occuring in Statement :  int-rmul: k1 a req: y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q subtype_rel: A ⊆B real: int-to-real: r(n) reg-seq-mul: reg-seq-mul(x;y) int-rmul: k1 a bdd-diff: bdd-diff(f;g) has-value: (a)↓ exists: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_lambda: λ2x.t[x] less_than: a < b true: True squash: T nat_plus: + nequal: a ≠ b ∈  so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q assert: b ifthenelse: if then else fi  bnot: ¬bb sq_type: SQType(T) bfalse: ff btrue: tt it: unit: Unit bool: 𝔹 int_nzero: -o regular-int-seq: k-regular-seq(f) sq_stable: SqStable(P) subtract: m rev_uimplies: rev_uimplies(P;Q) absval: |i|
Lemmas referenced :  req-iff-bdd-diff int-rmul_wf rmul_wf int-to-real_wf req_witness real_wf reg-seq-mul_wf value-type-has-value int-value-type absval_wf mul-non-neg1 false_wf decidable__le nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_term_value_add_lemma int_formula_prop_wf le_wf nat_plus_wf all_wf subtract_wf less_than_wf mul_nat_plus nat_plus_properties intformeq_wf itermMultiply_wf intformless_wf int_formula_prop_eq_lemma int_term_value_mul_lemma int_formula_prop_less_lemma equal-wf-base bdd-diff_functionality bdd-diff_weakening rmul-bdd-diff-reg-seq-mul assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert top_wf assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf iff_weakening_equal subtype_rel_self absval_mul true_wf squash_wf equal-wf-T-base absval_nat_plus nat_wf int_term_value_minus_lemma itermMinus_wf decidable__lt mul_cancel_in_le nequal_wf div-cancel2 decidable__equal_int int_subtype_base sq_stable__le mul-associates mul-distributes minus-one-mul mul-swap one-mul add-commutes absval_sym add_functionality_wrt_eq minus-add mul-commutes le_functionality le_weakening absval_unfold add-is-int-iff set_subtype_base multiply-is-int-iff nat_plus_subtype_nat absval_pos zero-add zero-mul zero-div-rem
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination independent_functionElimination sqequalRule isect_memberEquality because_Cache intEquality applyEquality lambdaEquality setElimination rename callbyvalueReduce dependent_pairFormation dependent_set_memberEquality multiplyEquality natural_numberEquality addEquality independent_pairFormation lambdaFormation dependent_functionElimination unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality approximateComputation int_eqEquality voidElimination voidEquality lessCases baseClosed imageMemberEquality axiomSqEquality imageElimination minusEquality divideEquality baseApply closedConclusion cumulativity instantiate promote_hyp equalityElimination universeEquality

Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[a:\mBbbR{}].    (k  *  a  =  (r(k)  *  a))



Date html generated: 2019_10_29-AM-09_32_26
Last ObjectModification: 2018_08_23-PM-01_45_09

Theory : reals


Home Index