Nuprl Lemma : zero-div-rem
∀[x:ℤ-o]. ((0 ÷ x ~ 0) ∧ (0 rem x ~ 0))
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
remainder: n rem m
, 
divide: n ÷ m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
int_nzero: ℤ-o
, 
prop: ℙ
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
true: True
, 
squash: ↓T
, 
not: ¬A
, 
false: False
, 
absval: |i|
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
rem-zero, 
iff_weakening_equal, 
int_nzero_wf, 
add-zero, 
zero-mul, 
le_wf, 
less_than_wf, 
absval_wf, 
nat_wf, 
equal-wf-base-T, 
div_unique3, 
absval_pos, 
true_wf, 
squash_wf, 
equal_wf, 
false_wf, 
set_subtype_base, 
absval-positive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
independent_pairFormation, 
sqequalIntensionalEquality, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
baseClosed, 
productElimination, 
independent_pairEquality, 
axiomSqEquality, 
natural_numberEquality, 
dependent_pairFormation, 
because_Cache, 
multiplyEquality, 
setElimination, 
rename, 
lambdaFormation, 
productEquality, 
lambdaEquality, 
addEquality, 
functionEquality, 
imageMemberEquality, 
universeEquality, 
imageElimination, 
dependent_set_memberEquality, 
voidElimination
Latex:
\mforall{}[x:\mBbbZ{}\msupminus{}\msupzero{}].  ((0  \mdiv{}  x  \msim{}  0)  \mwedge{}  (0  rem  x  \msim{}  0))
Date html generated:
2019_06_20-AM-11_24_56
Last ObjectModification:
2018_08_21-PM-10_43_08
Theory : arithmetic
Home
Index