Nuprl Lemma : zero-div-rem

[x:ℤ-o]. ((0 ÷ 0) ∧ (0 rem 0))


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] and: P ∧ Q remainder: rem m divide: n ÷ m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] int_nzero: -o prop: nat: uiff: uiff(P;Q) true: True squash: T not: ¬A false: False absval: |i| less_than': less_than'(a;b) le: A ≤ B so_apply: x[s] so_lambda: λ2x.t[x] nequal: a ≠ b ∈ 
Lemmas referenced :  subtype_base_sq int_subtype_base rem-zero iff_weakening_equal int_nzero_wf add-zero zero-mul le_wf less_than_wf absval_wf nat_wf equal-wf-base-T div_unique3 absval_pos true_wf squash_wf equal_wf false_wf set_subtype_base absval-positive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination independent_pairFormation sqequalIntensionalEquality hypothesisEquality applyEquality sqequalRule baseClosed productElimination independent_pairEquality axiomSqEquality natural_numberEquality dependent_pairFormation because_Cache multiplyEquality setElimination rename lambdaFormation productEquality lambdaEquality addEquality functionEquality imageMemberEquality universeEquality imageElimination dependent_set_memberEquality voidElimination

Latex:
\mforall{}[x:\mBbbZ{}\msupminus{}\msupzero{}].  ((0  \mdiv{}  x  \msim{}  0)  \mwedge{}  (0  rem  x  \msim{}  0))



Date html generated: 2019_06_20-AM-11_24_56
Last ObjectModification: 2018_08_21-PM-10_43_08

Theory : arithmetic


Home Index