Nuprl Lemma : cantor-interval-rleq

[a,b:ℝ].  ∀[n:ℕ]. ∀[f:ℕn ⟶ 𝔹].  ((fst(cantor-interval(a;b;f;n))) ≤ (snd(cantor-interval(a;b;f;n)))) supposing a ≤ b


Proof




Definitions occuring in Statement :  cantor-interval: cantor-interval(a;b;f;n) rleq: x ≤ y real: int_seg: {i..j-} nat: bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q real: cantor-interval: cantor-interval(a;b;f;n) pi1: fst(t) pi2: snd(t) less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  int_seg: {i..j-} lelt: i ≤ j < k int_nzero: -o true: True sq_stable: SqStable(P) squash: T rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q less_than: a < b rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf less_than'_wf rsub_wf cantor-interval_wf nat_plus_properties real_wf pi2_wf equal_wf pi1_wf_top nat_plus_wf int_seg_wf bool_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma le_wf nat_wf rleq_wf primrec0_lemma subtype_rel_dep_function int_seg_subtype false_wf subtype_rel_self eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int sq_stable__rleq decidable__lt lelt_wf int-rdiv_wf int_subtype_base true_wf nequal_wf radd_wf int-rmul_wf equal-wf-base rdiv_wf int-to-real_wf rless-int rless_wf rmul_preserves_rleq rmul_wf primrec-unroll rleq_functionality int-rdiv-req req_weakening uiff_transitivity rmul-rdiv-cancel2 rmul_comm radd_comm rmul_preserves_rleq2 rleq-int radd-preserves-rleq radd_functionality int-rmul-req req_transitivity req_inversion rmul-identity1 rmul-distrib2 rmul_functionality radd-int squash_wf radd_comm_eq iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality applyEquality because_Cache productEquality equalityTransitivity equalitySymmetry minusEquality axiomEquality functionEquality unionElimination dependent_set_memberEquality functionExtensionality equalityElimination promote_hyp instantiate cumulativity addLevel spreadEquality imageMemberEquality baseClosed imageElimination inrFormation addEquality universeEquality

Latex:
\mforall{}[a,b:\mBbbR{}].
    \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}].    ((fst(cantor-interval(a;b;f;n)))  \mleq{}  (snd(cantor-interval(a;b;f;n)))) 
    supposing  a  \mleq{}  b



Date html generated: 2017_10_03-AM-09_50_48
Last ObjectModification: 2017_07_28-AM-08_01_10

Theory : reals


Home Index