Nuprl Lemma : cantor-interval-rleq
∀[a,b:ℝ].  ∀[n:ℕ]. ∀[f:ℕn ⟶ 𝔹].  ((fst(cantor-interval(a;b;f;n))) ≤ (snd(cantor-interval(a;b;f;n)))) supposing a ≤ b
Proof
Definitions occuring in Statement : 
cantor-interval: cantor-interval(a;b;f;n)
, 
rleq: x ≤ y
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
real: ℝ
, 
cantor-interval: cantor-interval(a;b;f;n)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
less_than': less_than'(a;b)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
int_nzero: ℤ-o
, 
true: True
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
less_than'_wf, 
rsub_wf, 
cantor-interval_wf, 
nat_plus_properties, 
real_wf, 
pi2_wf, 
equal_wf, 
pi1_wf_top, 
nat_plus_wf, 
int_seg_wf, 
bool_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
le_wf, 
nat_wf, 
rleq_wf, 
primrec0_lemma, 
subtype_rel_dep_function, 
int_seg_subtype, 
false_wf, 
subtype_rel_self, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
sq_stable__rleq, 
decidable__lt, 
lelt_wf, 
int-rdiv_wf, 
int_subtype_base, 
true_wf, 
nequal_wf, 
radd_wf, 
int-rmul_wf, 
equal-wf-base, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
rmul_preserves_rleq, 
rmul_wf, 
primrec-unroll, 
rleq_functionality, 
int-rdiv-req, 
req_weakening, 
uiff_transitivity, 
rmul-rdiv-cancel2, 
rmul_comm, 
radd_comm, 
rmul_preserves_rleq2, 
rleq-int, 
radd-preserves-rleq, 
radd_functionality, 
int-rmul-req, 
req_transitivity, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
rmul_functionality, 
radd-int, 
squash_wf, 
radd_comm_eq, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
applyEquality, 
because_Cache, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
minusEquality, 
axiomEquality, 
functionEquality, 
unionElimination, 
dependent_set_memberEquality, 
functionExtensionality, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
addLevel, 
spreadEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
inrFormation, 
addEquality, 
universeEquality
Latex:
\mforall{}[a,b:\mBbbR{}].
    \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}].    ((fst(cantor-interval(a;b;f;n)))  \mleq{}  (snd(cantor-interval(a;b;f;n)))) 
    supposing  a  \mleq{}  b
Date html generated:
2017_10_03-AM-09_50_48
Last ObjectModification:
2017_07_28-AM-08_01_10
Theory : reals
Home
Index