Step
*
2
1
1
of Lemma
cantor-to-interval-onto-common
.....assertion.....
1. a : ℝ
2. b : ℝ
3. [%] : a < b
4. x : ℝ
5. y : ℝ
6. x ∈ [a, b]
7. y ∈ [a, b]
8. n : ℕ
9. |x - y| ≤ (2^n * b - a)/6 * 3^n
10. f : ℕn ⟶ 𝔹
11. x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
12. y ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
⊢ (∃g:ℕ ⟶ 𝔹. ((cantor-to-interval(a;b;g) = x) ∧ (g = f ∈ (ℕn ⟶ 𝔹))))
∧ (∃g:ℕ ⟶ 𝔹. ((cantor-to-interval(a;b;g) = y) ∧ (g = f ∈ (ℕn ⟶ 𝔹))))
BY
{ ((D 0 THENL [ThinVar `y'; (ThinVar `x' THEN RenameTo `x' `y')]) THEN RenameVar `%%' (-1) THEN RenameVar `%x' (5)) }
1
1. a : ℝ
2. b : ℝ
3. [%] : a < b
4. x : ℝ
5. x ∈ [a, b]
6. n : ℕ
7. f : ℕn ⟶ 𝔹
8. x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
⊢ ∃g:ℕ ⟶ 𝔹. ((cantor-to-interval(a;b;g) = x) ∧ (g = f ∈ (ℕn ⟶ 𝔹)))
2
1. a : ℝ
2. b : ℝ
3. [%] : a < b
4. x : ℝ
5. x ∈ [a, b]
6. n : ℕ
7. f : ℕn ⟶ 𝔹
8. x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
⊢ ∃g:ℕ ⟶ 𝔹. ((cantor-to-interval(a;b;g) = x) ∧ (g = f ∈ (ℕn ⟶ 𝔹)))
Latex:
Latex:
.....assertion.....
1. a : \mBbbR{}
2. b : \mBbbR{}
3. [\%] : a < b
4. x : \mBbbR{}
5. y : \mBbbR{}
6. x \mmember{} [a, b]
7. y \mmember{} [a, b]
8. n : \mBbbN{}
9. |x - y| \mleq{} (2\^{}n * b - a)/6 * 3\^{}n
10. f : \mBbbN{}n {}\mrightarrow{} \mBbbB{}
11. x \mmember{} [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
12. y \mmember{} [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
\mvdash{} (\mexists{}g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((cantor-to-interval(a;b;g) = x) \mwedge{} (g = f)))
\mwedge{} (\mexists{}g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((cantor-to-interval(a;b;g) = y) \mwedge{} (g = f)))
By
Latex:
((D 0 THENL [ThinVar `y'; (ThinVar `x' THEN RenameTo `x' `y')])
THEN RenameVar `\%\%' (-1)
THEN RenameVar `\%x' (5))
Home
Index