Step
*
2
1
2
1
of Lemma
cantor-to-interval-onto-common
1. a : ℝ
2. b : ℝ
3. [%] : a < b
4. x : ℝ
5. y : ℝ
6. x ∈ [a, b]
7. y ∈ [a, b]
8. n : ℕ
9. |x - y| ≤ (2^n * b - a)/6 * 3^n
10. f : ℕn ⟶ 𝔹
11. x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
12. y ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
13. g1 : ℕ ⟶ 𝔹
14. cantor-to-interval(a;b;g1) = x
15. g1 = f ∈ (ℕn ⟶ 𝔹)
16. g : ℕ ⟶ 𝔹
17. cantor-to-interval(a;b;g) = y
18. g = f ∈ (ℕn ⟶ 𝔹)
⊢ ∃f,g:ℕ ⟶ 𝔹. (((cantor-to-interval(a;b;f) = x) ∧ (cantor-to-interval(a;b;g) = y)) ∧ (f = g ∈ (ℕn ⟶ 𝔹)))
BY
{ TACTIC:(InstConcl [⌜g1⌝;⌜g⌝]⋅ THEN Auto) }
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. [\%] : a < b
4. x : \mBbbR{}
5. y : \mBbbR{}
6. x \mmember{} [a, b]
7. y \mmember{} [a, b]
8. n : \mBbbN{}
9. |x - y| \mleq{} (2\^{}n * b - a)/6 * 3\^{}n
10. f : \mBbbN{}n {}\mrightarrow{} \mBbbB{}
11. x \mmember{} [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
12. y \mmember{} [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
13. g1 : \mBbbN{} {}\mrightarrow{} \mBbbB{}
14. cantor-to-interval(a;b;g1) = x
15. g1 = f
16. g : \mBbbN{} {}\mrightarrow{} \mBbbB{}
17. cantor-to-interval(a;b;g) = y
18. g = f
\mvdash{} \mexists{}f,g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. (((cantor-to-interval(a;b;f) = x) \mwedge{} (cantor-to-interval(a;b;g) = y)) \mwedge{} (f = g))
By
Latex:
TACTIC:(InstConcl [\mkleeneopen{}g1\mkleeneclose{};\mkleeneopen{}g\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index