Step
*
2
1
1
1
of Lemma
close-reals-iff
1. x : ℝ
2. y : ℝ
3. k : ℕ+
4. ∀m:ℕ+. ((|(x m) - y m| * k) ≤ ((4 * k) + (2 * m)))
5. n : ℕ+
6. v : ℤ
7. ((x (4 * n)) - y (4 * n)) = v ∈ ℤ
⊢ ((|v| * k) ≤ ((4 * k) + (2 * 4 * n)))
⇒ (|v ÷ 4| ≤ (((2 * n * 1) ÷ k) + 4))
BY
{ (All Thin THEN Auto) }
1
1. k : ℕ+
2. n : ℕ+
3. v : ℤ
4. (|v| * k) ≤ ((4 * k) + (2 * 4 * n))
⊢ |v ÷ 4| ≤ (((2 * n * 1) ÷ k) + 4)
Latex:
Latex:
1. x : \mBbbR{}
2. y : \mBbbR{}
3. k : \mBbbN{}\msupplus{}
4. \mforall{}m:\mBbbN{}\msupplus{}. ((|(x m) - y m| * k) \mleq{} ((4 * k) + (2 * m)))
5. n : \mBbbN{}\msupplus{}
6. v : \mBbbZ{}
7. ((x (4 * n)) - y (4 * n)) = v
\mvdash{} ((|v| * k) \mleq{} ((4 * k) + (2 * 4 * n))) {}\mRightarrow{} (|v \mdiv{} 4| \mleq{} (((2 * n * 1) \mdiv{} k) + 4))
By
Latex:
(All Thin THEN Auto)
Home
Index