Step
*
1
1
1
of Lemma
common-limit-midpoints
1. a : ℕ ⟶ ℝ
2. b : ℕ ⟶ ℝ
3. ∀n:ℕ. (((a[n + 1] = a[n]) ∧ (b[n + 1] = (a[n] + b[n]/r(2)))) ∨ ((a[n + 1] = (a[n] + b[n]/r(2))) ∧ (b[n + 1] = b[n])))
4. ∀n:ℕ. ((r(2^n) * |a[n] - b[n]|) ≤ |a[0] - b[0]|)
5. ∀n,d:ℕ.
     (((r(2^n) * |a[n] - a[n + d]|) ≤ |a[0] - b[0]|)
     ∧ ((r(2^n) * |a[n] - b[n + d]|) ≤ |a[0] - b[0]|)
     ∧ ((r(2^n) * |b[n] - a[n + d]|) ≤ |a[0] - b[0]|)
     ∧ ((r(2^n) * |b[n] - b[n + d]|) ≤ |a[0] - b[0]|))
6. n : ℕ
7. r(-n) ≤ |a[0] - b[0]|
8. |a[0] - b[0]| ≤ r(n)
⊢ ∃y:ℝ. (lim n→∞.a[n] = y ∧ lim n→∞.b[n] = y)
BY
{ (Assert ∃y:ℝ. lim n→∞.a[n] = y BY
         (Fold `converges` 0
          THEN BLemma `converges-iff-cauchy`
          THEN Auto
          THEN (D 0 THENA Auto)
          THEN PromoteHyp (-1) (-4))) }
1
.....aux..... 
1. a : ℕ ⟶ ℝ
2. b : ℕ ⟶ ℝ
3. ∀n:ℕ. (((a[n + 1] = a[n]) ∧ (b[n + 1] = (a[n] + b[n]/r(2)))) ∨ ((a[n + 1] = (a[n] + b[n]/r(2))) ∧ (b[n + 1] = b[n])))
4. ∀n:ℕ. ((r(2^n) * |a[n] - b[n]|) ≤ |a[0] - b[0]|)
5. ∀n,d:ℕ.
     (((r(2^n) * |a[n] - a[n + d]|) ≤ |a[0] - b[0]|)
     ∧ ((r(2^n) * |a[n] - b[n + d]|) ≤ |a[0] - b[0]|)
     ∧ ((r(2^n) * |b[n] - a[n + d]|) ≤ |a[0] - b[0]|)
     ∧ ((r(2^n) * |b[n] - b[n + d]|) ≤ |a[0] - b[0]|))
6. k : ℕ+
7. n : ℕ
8. r(-n) ≤ |a[0] - b[0]|
9. |a[0] - b[0]| ≤ r(n)
⊢ ∃N:ℕ [(∀n,m:ℕ.  ((N ≤ n) 
⇒ (N ≤ m) 
⇒ (|a[n] - a[m]| ≤ (r1/r(k)))))]
2
1. a : ℕ ⟶ ℝ
2. b : ℕ ⟶ ℝ
3. ∀n:ℕ. (((a[n + 1] = a[n]) ∧ (b[n + 1] = (a[n] + b[n]/r(2)))) ∨ ((a[n + 1] = (a[n] + b[n]/r(2))) ∧ (b[n + 1] = b[n])))
4. ∀n:ℕ. ((r(2^n) * |a[n] - b[n]|) ≤ |a[0] - b[0]|)
5. ∀n,d:ℕ.
     (((r(2^n) * |a[n] - a[n + d]|) ≤ |a[0] - b[0]|)
     ∧ ((r(2^n) * |a[n] - b[n + d]|) ≤ |a[0] - b[0]|)
     ∧ ((r(2^n) * |b[n] - a[n + d]|) ≤ |a[0] - b[0]|)
     ∧ ((r(2^n) * |b[n] - b[n + d]|) ≤ |a[0] - b[0]|))
6. n : ℕ
7. r(-n) ≤ |a[0] - b[0]|
8. |a[0] - b[0]| ≤ r(n)
9. ∃y:ℝ. lim n→∞.a[n] = y
⊢ ∃y:ℝ. (lim n→∞.a[n] = y ∧ lim n→∞.b[n] = y)
Latex:
Latex:
1.  a  :  \mBbbN{}  {}\mrightarrow{}  \mBbbR{}
2.  b  :  \mBbbN{}  {}\mrightarrow{}  \mBbbR{}
3.  \mforall{}n:\mBbbN{}
          (((a[n  +  1]  =  a[n])  \mwedge{}  (b[n  +  1]  =  (a[n]  +  b[n]/r(2))))
          \mvee{}  ((a[n  +  1]  =  (a[n]  +  b[n]/r(2)))  \mwedge{}  (b[n  +  1]  =  b[n])))
4.  \mforall{}n:\mBbbN{}.  ((r(2\^{}n)  *  |a[n]  -  b[n]|)  \mleq{}  |a[0]  -  b[0]|)
5.  \mforall{}n,d:\mBbbN{}.
          (((r(2\^{}n)  *  |a[n]  -  a[n  +  d]|)  \mleq{}  |a[0]  -  b[0]|)
          \mwedge{}  ((r(2\^{}n)  *  |a[n]  -  b[n  +  d]|)  \mleq{}  |a[0]  -  b[0]|)
          \mwedge{}  ((r(2\^{}n)  *  |b[n]  -  a[n  +  d]|)  \mleq{}  |a[0]  -  b[0]|)
          \mwedge{}  ((r(2\^{}n)  *  |b[n]  -  b[n  +  d]|)  \mleq{}  |a[0]  -  b[0]|))
6.  n  :  \mBbbN{}
7.  r(-n)  \mleq{}  |a[0]  -  b[0]|
8.  |a[0]  -  b[0]|  \mleq{}  r(n)
\mvdash{}  \mexists{}y:\mBbbR{}.  (lim  n\mrightarrow{}\minfty{}.a[n]  =  y  \mwedge{}  lim  n\mrightarrow{}\minfty{}.b[n]  =  y)
By
Latex:
(Assert  \mexists{}y:\mBbbR{}.  lim  n\mrightarrow{}\minfty{}.a[n]  =  y  BY
              (Fold  `converges`  0
                THEN  BLemma  `converges-iff-cauchy`
                THEN  Auto
                THEN  (D  0  THENA  Auto)
                THEN  PromoteHyp  (-1)  (-4)))
Home
Index