Step
*
1
of Lemma
compact-dist-positive
1. [X] : Type
2. d : metric(X)
3. A : Type
4. A ⊆r X
5. c : mcompact(A;d)
6. x : X
7. dist-fun(d;x) ∈ FUN(A ⟶ ℝ)
8. (∀x@0:A. (dist(x;A) ≤ (dist-fun(d;x) x@0))) ∧ (∀e:ℝ. ((r0 < e)
⇒ (∃x@0:A. ((dist-fun(d;x) x@0) < (dist(x;A) + e)))))
9. r0 < dist(x;A)
⊢ ∃n:ℕ+. ∀a:A. ((r1/r(n)) ≤ mdist(d;x;a))
BY
{ (ExRepD
THEN (InstLemma `small-reciprocal-real` [⌜dist(x;A)⌝]⋅ THENA Auto)
THEN D -1
THEN (D 0 With ⌜k⌝ THENW (Try (D 0) THEN Try ((Assert a ∈ X BY Auto)) THEN Auto))
THEN ParallelOp -5
THEN RepUR ``dist-fun`` -1
THEN (Assert a ∈ X BY
Auto)
THEN Auto) }
Latex:
Latex:
1. [X] : Type
2. d : metric(X)
3. A : Type
4. A \msubseteq{}r X
5. c : mcompact(A;d)
6. x : X
7. dist-fun(d;x) \mmember{} FUN(A {}\mrightarrow{} \mBbbR{})
8. (\mforall{}x@0:A. (dist(x;A) \mleq{} (dist-fun(d;x) x@0)))
\mwedge{} (\mforall{}e:\mBbbR{}. ((r0 < e) {}\mRightarrow{} (\mexists{}x@0:A. ((dist-fun(d;x) x@0) < (dist(x;A) + e)))))
9. r0 < dist(x;A)
\mvdash{} \mexists{}n:\mBbbN{}\msupplus{}. \mforall{}a:A. ((r1/r(n)) \mleq{} mdist(d;x;a))
By
Latex:
(ExRepD
THEN (InstLemma `small-reciprocal-real` [\mkleeneopen{}dist(x;A)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN D -1
THEN (D 0 With \mkleeneopen{}k\mkleeneclose{} THENW (Try (D 0) THEN Try ((Assert a \mmember{} X BY Auto)) THEN Auto))
THEN ParallelOp -5
THEN RepUR ``dist-fun`` -1
THEN (Assert a \mmember{} X BY
Auto)
THEN Auto)
Home
Index