Nuprl Lemma : compact-dist-positive

[X:Type]
  ∀d:metric(X). ∀A:Type.
    ∀c:mcompact(A;d). ∀x:X.  (r0 < dist(x;A) ⇐⇒ ∃n:ℕ+. ∀a:A. ((r1/r(n)) ≤ mdist(d;x;a))) supposing A ⊆X


Proof




Definitions occuring in Statement :  compact-dist: dist(x;A) mcompact: mcompact(X;d) mdist: mdist(d;x;y) metric: metric(X) rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) nat_plus: + uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q natural_number: $n universe: Type
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y uiff: uiff(P;Q) nequal: a ≠ b ∈  int_nzero: -o so_apply: x[s] so_lambda: λ2x.t[x] mfun: FUN(X ⟶ Y) sq_exists: x:A [B[x]] rless: x < y dist-fun: dist-fun(d;x) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) or: P ∨ Q guard: {T} rneq: x ≠ y nat_plus: + istype: istype(T) exists: x:A. B[x] rev_implies:  Q prop: implies:  Q and: P ∧ Q iff: ⇐⇒ Q compact-dist: dist(x;A) subtype_rel: A ⊆B member: t ∈ T uimplies: supposing a all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  rless_irreflexivity rleq_weakening req_weakening radd-int-fractions req_functionality radd_functionality_wrt_rless2 rleq_weakening_equal rless_functionality_wrt_implies int_term_value_add_lemma itermAdd_wf decidable__equal_int nat_plus_inc_int_nzero nequal_wf less_than_wf set_subtype_base int_subtype_base int_formula_prop_eq_lemma intformeq_wf int_entire_a req-int-fractions mul_bounds_1b radd_wf subtype_rel_dep_function is-mfun_wf subtype_rel_set istype-less_than rless-int-fractions2 int_term_value_mul_lemma itermMultiply_wf not-rless rleq_weakening_rless rless_transitivity1 small-reciprocal-real istype-universe metric_wf subtype_rel_wf mcompact_wf mdist_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_plus_properties rless-int rdiv_wf rleq_wf nat_plus_wf compact-dist_wf int-to-real_wf rless_wf metric-on-subtype compact-inf-property rmetric_wf real_wf mfun-subtype2 dist-fun_wf
Rules used in proof :  intEquality sqequalBase baseClosed baseApply equalityIstype addEquality functionEquality multiplyEquality dependent_set_memberEquality_alt universeEquality instantiate inhabitedIsType voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination independent_functionElimination inrFormation_alt because_Cache setElimination closedConclusion productElimination functionIsType lambdaEquality_alt productIsType natural_numberEquality universeIsType independent_pairFormation equalitySymmetry equalityTransitivity dependent_functionElimination independent_isectElimination applyEquality hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid rename thin hypothesis axiomEquality sqequalRule introduction cut lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}A:Type.
        \mforall{}c:mcompact(A;d).  \mforall{}x:X.    (r0  <  dist(x;A)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  \mforall{}a:A.  ((r1/r(n))  \mleq{}  mdist(d;x;a))) 
        supposing  A  \msubseteq{}r  X



Date html generated: 2019_10_30-AM-07_13_04
Last ObjectModification: 2019_10_25-PM-05_33_26

Theory : reals


Home Index