Nuprl Lemma : compact-dist-positive
∀[X:Type]
  ∀d:metric(X). ∀A:Type.
    ∀c:mcompact(A;d). ∀x:X.  (r0 < dist(x;A) ⇐⇒ ∃n:ℕ+. ∀a:A. ((r1/r(n)) ≤ mdist(d;x;a))) supposing A ⊆r X
Proof
Definitions occuring in Statement : 
compact-dist: dist(x;A), 
mcompact: mcompact(X;d), 
mdist: mdist(d;x;y), 
metric: metric(X), 
rdiv: (x/y), 
rleq: x ≤ y, 
rless: x < y, 
int-to-real: r(n), 
nat_plus: ℕ+, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
uiff: uiff(P;Q), 
nequal: a ≠ b ∈ T , 
int_nzero: ℤ-o, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
mfun: FUN(X ⟶ Y), 
sq_exists: ∃x:A [B[x]], 
rless: x < y, 
dist-fun: dist-fun(d;x), 
top: Top, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
decidable: Dec(P), 
or: P ∨ Q, 
guard: {T}, 
rneq: x ≠ y, 
nat_plus: ℕ+, 
istype: istype(T), 
exists: ∃x:A. B[x], 
rev_implies: P ⇐ Q, 
prop: ℙ, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
compact-dist: dist(x;A), 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rless_irreflexivity, 
rleq_weakening, 
req_weakening, 
radd-int-fractions, 
req_functionality, 
radd_functionality_wrt_rless2, 
rleq_weakening_equal, 
rless_functionality_wrt_implies, 
int_term_value_add_lemma, 
itermAdd_wf, 
decidable__equal_int, 
nat_plus_inc_int_nzero, 
nequal_wf, 
less_than_wf, 
set_subtype_base, 
int_subtype_base, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_entire_a, 
req-int-fractions, 
mul_bounds_1b, 
radd_wf, 
subtype_rel_dep_function, 
is-mfun_wf, 
subtype_rel_set, 
istype-less_than, 
rless-int-fractions2, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
not-rless, 
rleq_weakening_rless, 
rless_transitivity1, 
small-reciprocal-real, 
istype-universe, 
metric_wf, 
subtype_rel_wf, 
mcompact_wf, 
mdist_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
rdiv_wf, 
rleq_wf, 
nat_plus_wf, 
compact-dist_wf, 
int-to-real_wf, 
rless_wf, 
metric-on-subtype, 
compact-inf-property, 
rmetric_wf, 
real_wf, 
mfun-subtype2, 
dist-fun_wf
Rules used in proof : 
intEquality, 
sqequalBase, 
baseClosed, 
baseApply, 
equalityIstype, 
addEquality, 
functionEquality, 
multiplyEquality, 
dependent_set_memberEquality_alt, 
universeEquality, 
instantiate, 
inhabitedIsType, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
independent_functionElimination, 
inrFormation_alt, 
because_Cache, 
setElimination, 
closedConclusion, 
productElimination, 
functionIsType, 
lambdaEquality_alt, 
productIsType, 
natural_numberEquality, 
universeIsType, 
independent_pairFormation, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
independent_isectElimination, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
rename, 
thin, 
hypothesis, 
axiomEquality, 
sqequalRule, 
introduction, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}A:Type.
        \mforall{}c:mcompact(A;d).  \mforall{}x:X.    (r0  <  dist(x;A)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  \mforall{}a:A.  ((r1/r(n))  \mleq{}  mdist(d;x;a))) 
        supposing  A  \msubseteq{}r  X
Date html generated:
2019_10_30-AM-07_13_04
Last ObjectModification:
2019_10_25-PM-05_33_26
Theory : reals
Home
Index