Nuprl Lemma : compact-dist-positive
∀[X:Type]
∀d:metric(X). ∀A:Type.
∀c:mcompact(A;d). ∀x:X. (r0 < dist(x;A)
⇐⇒ ∃n:ℕ+. ∀a:A. ((r1/r(n)) ≤ mdist(d;x;a))) supposing A ⊆r X
Proof
Definitions occuring in Statement :
compact-dist: dist(x;A)
,
mcompact: mcompact(X;d)
,
mdist: mdist(d;x;y)
,
metric: metric(X)
,
rdiv: (x/y)
,
rleq: x ≤ y
,
rless: x < y
,
int-to-real: r(n)
,
nat_plus: ℕ+
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
rev_uimplies: rev_uimplies(P;Q)
,
rge: x ≥ y
,
uiff: uiff(P;Q)
,
nequal: a ≠ b ∈ T
,
int_nzero: ℤ-o
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
mfun: FUN(X ⟶ Y)
,
sq_exists: ∃x:A [B[x]]
,
rless: x < y
,
dist-fun: dist-fun(d;x)
,
top: Top
,
false: False
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
decidable: Dec(P)
,
or: P ∨ Q
,
guard: {T}
,
rneq: x ≠ y
,
nat_plus: ℕ+
,
istype: istype(T)
,
exists: ∃x:A. B[x]
,
rev_implies: P
⇐ Q
,
prop: ℙ
,
implies: P
⇒ Q
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
compact-dist: dist(x;A)
,
subtype_rel: A ⊆r B
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
rless_irreflexivity,
rleq_weakening,
req_weakening,
radd-int-fractions,
req_functionality,
radd_functionality_wrt_rless2,
rleq_weakening_equal,
rless_functionality_wrt_implies,
int_term_value_add_lemma,
itermAdd_wf,
decidable__equal_int,
nat_plus_inc_int_nzero,
nequal_wf,
less_than_wf,
set_subtype_base,
int_subtype_base,
int_formula_prop_eq_lemma,
intformeq_wf,
int_entire_a,
req-int-fractions,
mul_bounds_1b,
radd_wf,
subtype_rel_dep_function,
is-mfun_wf,
subtype_rel_set,
istype-less_than,
rless-int-fractions2,
int_term_value_mul_lemma,
itermMultiply_wf,
not-rless,
rleq_weakening_rless,
rless_transitivity1,
small-reciprocal-real,
istype-universe,
metric_wf,
subtype_rel_wf,
mcompact_wf,
mdist_wf,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_less_lemma,
int_formula_prop_not_lemma,
istype-void,
int_formula_prop_and_lemma,
istype-int,
itermVar_wf,
itermConstant_wf,
intformless_wf,
intformnot_wf,
intformand_wf,
full-omega-unsat,
decidable__lt,
nat_plus_properties,
rless-int,
rdiv_wf,
rleq_wf,
nat_plus_wf,
compact-dist_wf,
int-to-real_wf,
rless_wf,
metric-on-subtype,
compact-inf-property,
rmetric_wf,
real_wf,
mfun-subtype2,
dist-fun_wf
Rules used in proof :
intEquality,
sqequalBase,
baseClosed,
baseApply,
equalityIstype,
addEquality,
functionEquality,
multiplyEquality,
dependent_set_memberEquality_alt,
universeEquality,
instantiate,
inhabitedIsType,
voidElimination,
isect_memberEquality_alt,
int_eqEquality,
dependent_pairFormation_alt,
approximateComputation,
unionElimination,
independent_functionElimination,
inrFormation_alt,
because_Cache,
setElimination,
closedConclusion,
productElimination,
functionIsType,
lambdaEquality_alt,
productIsType,
natural_numberEquality,
universeIsType,
independent_pairFormation,
equalitySymmetry,
equalityTransitivity,
dependent_functionElimination,
independent_isectElimination,
applyEquality,
hypothesisEquality,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
rename,
thin,
hypothesis,
axiomEquality,
sqequalRule,
introduction,
cut,
lambdaFormation_alt,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[X:Type]
\mforall{}d:metric(X). \mforall{}A:Type.
\mforall{}c:mcompact(A;d). \mforall{}x:X. (r0 < dist(x;A) \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}\msupplus{}. \mforall{}a:A. ((r1/r(n)) \mleq{} mdist(d;x;a)))
supposing A \msubseteq{}r X
Date html generated:
2019_10_30-AM-07_13_04
Last ObjectModification:
2019_10_25-PM-05_33_26
Theory : reals
Home
Index