Nuprl Lemma : compact-inf-property

[X:Type]
  ∀d:metric(X). ∀c:mcompact(X;d). ∀f:FUN(X ⟶ ℝ).
    ((∀x:X. (compact-inf{i:l}(d;c;f) ≤ (f x))) ∧ (∀e:ℝ((r0 < e)  (∃x:X. ((f x) < (compact-inf{i:l}(d;c;f) e))))))


Proof




Definitions occuring in Statement :  compact-inf: compact-inf{i:l}(d;c;f) mcompact: mcompact(X;d) mfun: FUN(X ⟶ Y) rmetric: rmetric() metric: metric(X) rleq: x ≤ y rless: x < y radd: b int-to-real: r(n) real: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a natural_number: $n universe: Type
Definitions unfolded in proof :  compact-inf: compact-inf{i:l}(d;c;f) mfun: FUN(X ⟶ Y) pi2: snd(t) mcompact: mcompact(X;d) member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  istype-universe metric_wf mcompact_wf rmetric_wf real_wf mfun_wf compact-mc_wf m-inf-property
Rules used in proof :  universeEquality instantiate universeIsType hypothesis rename setElimination sqequalRule productElimination dependent_functionElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}c:mcompact(X;d).  \mforall{}f:FUN(X  {}\mrightarrow{}  \mBbbR{}).
        ((\mforall{}x:X.  (compact-inf\{i:l\}(d;c;f)  \mleq{}  (f  x)))
        \mwedge{}  (\mforall{}e:\mBbbR{}.  ((r0  <  e)  {}\mRightarrow{}  (\mexists{}x:X.  ((f  x)  <  (compact-inf\{i:l\}(d;c;f)  +  e))))))



Date html generated: 2019_10_30-AM-07_09_29
Last ObjectModification: 2019_10_25-PM-02_41_45

Theory : reals


Home Index