Nuprl Lemma : mfun-subtype2
∀[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[A:Type].  FUN(X ⟶ Y) ⊆r FUN(A ⟶ Y) supposing A ⊆r X
Proof
Definitions occuring in Statement : 
mfun: FUN(X ⟶ Y)
, 
metric: metric(X)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
is-mfun: f:FUN(X;Y)
, 
prop: ℙ
, 
mfun: FUN(X ⟶ Y)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
subtype_rel_wf, 
mfun_wf, 
metric-on-subtype, 
is-mfun_wf
Rules used in proof : 
dependent_functionElimination, 
lambdaFormation_alt, 
because_Cache, 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
axiomEquality, 
independent_isectElimination, 
isectElimination, 
extract_by_obid, 
universeIsType, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality_alt, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[A:Type].
    FUN(X  {}\mrightarrow{}  Y)  \msubseteq{}r  FUN(A  {}\mrightarrow{}  Y)  supposing  A  \msubseteq{}r  X
Date html generated:
2019_10_30-AM-06_21_35
Last ObjectModification:
2019_10_25-PM-04_40_32
Theory : reals
Home
Index