Nuprl Lemma : mfun-subtype2

[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[A:Type].  FUN(X ⟶ Y) ⊆FUN(A ⟶ Y) supposing A ⊆X


Proof




Definitions occuring in Statement :  mfun: FUN(X ⟶ Y) metric: metric(X) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] is-mfun: f:FUN(X;Y) prop: mfun: FUN(X ⟶ Y) subtype_rel: A ⊆B uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  subtype_rel_wf mfun_wf metric-on-subtype is-mfun_wf
Rules used in proof :  dependent_functionElimination lambdaFormation_alt because_Cache inhabitedIsType isectIsTypeImplies isect_memberEquality_alt axiomEquality independent_isectElimination isectElimination extract_by_obid universeIsType sqequalRule hypothesis hypothesisEquality applyEquality functionExtensionality dependent_set_memberEquality_alt rename thin setElimination sqequalHypSubstitution lambdaEquality_alt cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[A:Type].
    FUN(X  {}\mrightarrow{}  Y)  \msubseteq{}r  FUN(A  {}\mrightarrow{}  Y)  supposing  A  \msubseteq{}r  X



Date html generated: 2019_10_30-AM-06_21_35
Last ObjectModification: 2019_10_25-PM-04_40_32

Theory : reals


Home Index