Step
*
1
1
1
of Lemma
connectedness-main-lemma
1. x : ℝ
2. g : ℕ ⟶ ℝ
3. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (|(g n) - x| ≤ (r1/r(k)))))])
4. P : ℝ ⟶ 𝔹
5. ∀G:n:ℕ+ ⟶ {y:ℝ| accelerate(3;x) = y ∈ (ℕ+n ⟶ ℤ)} . (∃n:ℕ+ [P accelerate(3;x) = P (G n)])
6. c : k:ℕ+ ⟶ ℕ
7. ∀k:ℕ+. ∀n:ℕ. (((c k) ≤ n)
⇒ (|(g n) - x| ≤ (r1/r(k))))
8. ∀k:ℕ+. (|x - g (c k)| ≤ (r1/r(k)))
9. ∀k:ℕ+. (blended-real(6 * k;x;g (c (6 * k))) = accelerate(3;x) ∈ (ℕ+k ⟶ ℤ))
⊢ ∃z:{z:ℝ| P z = P accelerate(3;x)} . (∃n:ℕ [(z = (g n))])
BY
{ ((InstHyp [⌜λk.blended-real(6 * k;x;g (c (6 * k)))⌝] 5⋅ THENA (Auto THEN MemTypeCD THEN Auto)) THEN Reduce -1) }
1
1. x : ℝ
2. g : ℕ ⟶ ℝ
3. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (|(g n) - x| ≤ (r1/r(k)))))])
4. P : ℝ ⟶ 𝔹
5. ∀G:n:ℕ+ ⟶ {y:ℝ| accelerate(3;x) = y ∈ (ℕ+n ⟶ ℤ)} . (∃n:ℕ+ [P accelerate(3;x) = P (G n)])
6. c : k:ℕ+ ⟶ ℕ
7. ∀k:ℕ+. ∀n:ℕ. (((c k) ≤ n)
⇒ (|(g n) - x| ≤ (r1/r(k))))
8. ∀k:ℕ+. (|x - g (c k)| ≤ (r1/r(k)))
9. ∀k:ℕ+. (blended-real(6 * k;x;g (c (6 * k))) = accelerate(3;x) ∈ (ℕ+k ⟶ ℤ))
10. ∃n:ℕ+ [P accelerate(3;x) = P blended-real(6 * n;x;g (c (6 * n)))]
⊢ ∃z:{z:ℝ| P z = P accelerate(3;x)} . (∃n:ℕ [(z = (g n))])
Latex:
Latex:
1. x : \mBbbR{}
2. g : \mBbbN{} {}\mrightarrow{} \mBbbR{}
3. \mforall{}k:\mBbbN{}\msupplus{}. (\mexists{}N:\mBbbN{} [(\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|(g n) - x| \mleq{} (r1/r(k)))))])
4. P : \mBbbR{} {}\mrightarrow{} \mBbbB{}
5. \mforall{}G:n:\mBbbN{}\msupplus{} {}\mrightarrow{} \{y:\mBbbR{}| accelerate(3;x) = y\} . (\mexists{}n:\mBbbN{}\msupplus{} [P accelerate(3;x) = P (G n)])
6. c : k:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbN{}
7. \mforall{}k:\mBbbN{}\msupplus{}. \mforall{}n:\mBbbN{}. (((c k) \mleq{} n) {}\mRightarrow{} (|(g n) - x| \mleq{} (r1/r(k))))
8. \mforall{}k:\mBbbN{}\msupplus{}. (|x - g (c k)| \mleq{} (r1/r(k)))
9. \mforall{}k:\mBbbN{}\msupplus{}. (blended-real(6 * k;x;g (c (6 * k))) = accelerate(3;x))
\mvdash{} \mexists{}z:\{z:\mBbbR{}| P z = P accelerate(3;x)\} . (\mexists{}n:\mBbbN{} [(z = (g n))])
By
Latex:
((InstHyp [\mkleeneopen{}\mlambda{}k.blended-real(6 * k;x;g (c (6 * k)))\mkleeneclose{}] 5\mcdot{} THENA (Auto THEN MemTypeCD THEN Auto))
THEN Reduce -1
)
Home
Index