Step
*
1
2
1
1
1
1
of Lemma
derivative-is-zero
1. I : Interval
2. iproper(I)
3. f : I ⟶ℝ
4. d(f[x])/dx = λx.r0 on I
5. ∀a,b:{x:ℝ| x ∈ I} . ((a < b)
⇒ (f[a] = f[b]))
6. r : ℝ
7. r ∈ I
8. ∀b:{x:ℝ| x ∈ I} . ((r < b)
⇒ (f[r] = f[b]))
9. ∀b:{x:ℝ| x ∈ I} . ((b < r)
⇒ (f[b] = f[r]))
10. x : {x:ℝ| x ∈ I}
⊢ ¬f[x] ≠ f[r]
BY
{ ((D 0 THENA Auto) THEN Assert ⌜x = r⌝⋅) }
1
.....assertion.....
1. I : Interval
2. iproper(I)
3. f : I ⟶ℝ
4. d(f[x])/dx = λx.r0 on I
5. ∀a,b:{x:ℝ| x ∈ I} . ((a < b)
⇒ (f[a] = f[b]))
6. r : ℝ
7. r ∈ I
8. ∀b:{x:ℝ| x ∈ I} . ((r < b)
⇒ (f[r] = f[b]))
9. ∀b:{x:ℝ| x ∈ I} . ((b < r)
⇒ (f[b] = f[r]))
10. x : {x:ℝ| x ∈ I}
11. f[x] ≠ f[r]
⊢ x = r
2
1. I : Interval
2. iproper(I)
3. f : I ⟶ℝ
4. d(f[x])/dx = λx.r0 on I
5. ∀a,b:{x:ℝ| x ∈ I} . ((a < b)
⇒ (f[a] = f[b]))
6. r : ℝ
7. r ∈ I
8. ∀b:{x:ℝ| x ∈ I} . ((r < b)
⇒ (f[r] = f[b]))
9. ∀b:{x:ℝ| x ∈ I} . ((b < r)
⇒ (f[b] = f[r]))
10. x : {x:ℝ| x ∈ I}
11. f[x] ≠ f[r]
12. x = r
⊢ False
Latex:
Latex:
1. I : Interval
2. iproper(I)
3. f : I {}\mrightarrow{}\mBbbR{}
4. d(f[x])/dx = \mlambda{}x.r0 on I
5. \mforall{}a,b:\{x:\mBbbR{}| x \mmember{} I\} . ((a < b) {}\mRightarrow{} (f[a] = f[b]))
6. r : \mBbbR{}
7. r \mmember{} I
8. \mforall{}b:\{x:\mBbbR{}| x \mmember{} I\} . ((r < b) {}\mRightarrow{} (f[r] = f[b]))
9. \mforall{}b:\{x:\mBbbR{}| x \mmember{} I\} . ((b < r) {}\mRightarrow{} (f[b] = f[r]))
10. x : \{x:\mBbbR{}| x \mmember{} I\}
\mvdash{} \mneg{}f[x] \mneq{} f[r]
By
Latex:
((D 0 THENA Auto) THEN Assert \mkleeneopen{}x = r\mkleeneclose{}\mcdot{})
Home
Index