Nuprl Lemma : derivative_functionality2
∀I,J:Interval.
  ∀[f1,f2,g1,g2:I ⟶ℝ].
    (rfun-eq(I;f1;f2) 
⇒ rfun-eq(I;g1;g2) 
⇒ J ⊆ I  
⇒ d(f1[x])/dx = λx.g1[x] on I 
⇒ d(f2[x])/dx = λx.g2[x] on J)
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
subinterval: I ⊆ J 
, 
rfun-eq: rfun-eq(I;f;g)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
rfun-eq: rfun-eq(I;f;g)
, 
r-ap: f(x)
Lemmas referenced : 
derivative_functionality_wrt_subinterval, 
derivative_wf, 
i-member_wf, 
real_wf, 
subinterval_wf, 
rfun-eq_wf, 
rfun_wf, 
interval_wf, 
set_wf, 
derivative_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
isectElimination, 
sqequalRule, 
independent_functionElimination, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
setEquality
Latex:
\mforall{}I,J:Interval.
    \mforall{}[f1,f2,g1,g2:I  {}\mrightarrow{}\mBbbR{}].
        (rfun-eq(I;f1;f2)
        {}\mRightarrow{}  rfun-eq(I;g1;g2)
        {}\mRightarrow{}  J  \msubseteq{}  I 
        {}\mRightarrow{}  d(f1[x])/dx  =  \mlambda{}x.g1[x]  on  I
        {}\mRightarrow{}  d(f2[x])/dx  =  \mlambda{}x.g2[x]  on  J)
Date html generated:
2018_05_22-PM-02_44_18
Last ObjectModification:
2017_10_20-PM-00_15_48
Theory : reals
Home
Index