Nuprl Lemma : derivative_functionality
∀[I:Interval]. ∀[f1,f2,g1,g2:I ⟶ℝ].
  (rfun-eq(I;f1;f2) ⇒ rfun-eq(I;g1;g2) ⇒ λx.g1[x] = d(f1[x])/dx on I ⇒ λx.g2[x] = d(f2[x])/dx on I)
Proof
Definitions occuring in Statement : 
derivative: λz.g[z] = d(f[x])/dx on I, 
rfun-eq: rfun-eq(I;f;g), 
rfun: I ⟶ℝ, 
interval: Interval, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
implies: P ⇒ Q
Definitions unfolded in proof : 
top: Top, 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
decidable: Dec(P), 
sq_exists: ∃x:{A| B[x]}, 
rless: x < y, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
guard: {T}, 
rneq: x ≠ y, 
uimplies: b supposing a, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
so_apply: x[s], 
rfun: I ⟶ℝ, 
label: ...$L... t, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
derivative: λz.g[z] = d(f[x])/dx on I, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
rfun-eq: rfun-eq(I;f;g), 
r-ap: f(x), 
uiff: uiff(P;Q)
Lemmas referenced : 
rmul_functionality, 
rsub_functionality, 
rabs_functionality, 
req_weakening, 
rleq_functionality, 
r-ap_wf, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
icompact_wf, 
nat_plus_wf, 
less_than_wf, 
all_wf, 
derivative_wf, 
real_wf, 
i-member_wf, 
rfun-eq_wf, 
rfun_wf, 
interval_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
i-approx_wf, 
i-member-approx, 
rmul_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf
Rules used in proof : 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
inrFormation, 
independent_isectElimination, 
natural_numberEquality, 
dependent_set_memberEquality, 
rename, 
setElimination, 
independent_functionElimination, 
dependent_functionElimination, 
promote_hyp, 
productElimination, 
independent_pairFormation, 
because_Cache, 
hypothesis, 
setEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction, 
productEquality, 
functionEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[f1,f2,g1,g2:I  {}\mrightarrow{}\mBbbR{}].
    (rfun-eq(I;f1;f2)
    {}\mRightarrow{}  rfun-eq(I;g1;g2)
    {}\mRightarrow{}  \mlambda{}x.g1[x]  =  d(f1[x])/dx  on  I
    {}\mRightarrow{}  \mlambda{}x.g2[x]  =  d(f2[x])/dx  on  I)
Date html generated:
2016_05_18-AM-09_59_27
Last ObjectModification:
2016_01_17-AM-00_42_25
Theory : reals
Home
Index