Step
*
3
of Lemma
dot-product-split-first
1. n : ℕ+
2. x : ℝ^n
3. y : ℝ^n
⊢ x⋅y = (((x 0) * (y 0)) + λi.(x (i + 1))⋅λi.(y (i + 1)))
BY
{ CaseNat 1 `n' }
1
1. n : ℕ+
2. x : ℝ^n
3. y : ℝ^n
4. n = 1 ∈ ℤ
⊢ x⋅y = (((x 0) * (y 0)) + λi.(x (i + 1))⋅λi.(y (i + 1)))
2
1. n : ℕ+
2. x : ℝ^n
3. y : ℝ^n
4. ¬(n = 1 ∈ ℤ)
⊢ x⋅y = (((x 0) * (y 0)) + λi.(x (i + 1))⋅λi.(y (i + 1)))
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. x : \mBbbR{}\^{}n
3. y : \mBbbR{}\^{}n
\mvdash{} x\mcdot{}y = (((x 0) * (y 0)) + \mlambda{}i.(x (i + 1))\mcdot{}\mlambda{}i.(y (i + 1)))
By
Latex:
CaseNat 1 `n'
Home
Index