Nuprl Lemma : exp-exists-ext

x:ℝ. ∃a:ℝ. Σn.(x^n)/(n)! a


Proof




Definitions occuring in Statement :  series-sum: Σn.x[n] a rnexp: x^k1 int-rdiv: (a)/k1 real: fact: (n)! all: x:A. B[x] exists: x:A. B[x]
Definitions unfolded in proof :  canonical-bound-property rmul_preserves_rleq r-archimedean ratio-test-ext rleq_functionality r-archimedean2 iff_weakening_equal exp-series-converges exp-exists guard: {T} implies:  Q all: x:A. B[x] sq_type: SQType(T) uimplies: supposing a uall: [x:A]. B[x] reg-seq-mul: reg-seq-mul(x;y) bnot: ¬bb le_int: i ≤j reg-seq-adjust: reg-seq-adjust(n;x) reg-seq-inv: reg-seq-inv(x) canonical-bound: canonical-bound(r) imax: imax(a;b) accelerate: accelerate(k;f) eq_int: (i =z j) btrue: tt bfalse: ff mu-ge: mu-ge(f;n) rinv: rinv(x) int-to-real: r(n) rmul: b rdiv: (x/y) absval: |i| lt_int: i <j ifthenelse: if then else fi  quick-find: quick-find(p;n) rlessw: rlessw(x;y) rminus: -(x) so_lambda: λ2x.t[x] member: t ∈ T
Lemmas referenced :  int_subtype_base subtype_base_sq exp-exists canonical-bound-property rmul_preserves_rleq r-archimedean ratio-test-ext rleq_functionality r-archimedean2 iff_weakening_equal exp-series-converges
Rules used in proof :  independent_functionElimination dependent_functionElimination natural_numberEquality independent_isectElimination intEquality cumulativity isectElimination equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}x:\mBbbR{}.  \mexists{}a:\mBbbR{}.  \mSigma{}n.(x\^{}n)/(n)!  =  a



Date html generated: 2018_05_22-PM-02_04_08
Last ObjectModification: 2018_05_21-AM-00_16_53

Theory : reals


Home Index