Nuprl Lemma : exp-exists-ext
∀x:ℝ. ∃a:ℝ. Σn.(x^n)/(n)! = a
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a
, 
rnexp: x^k1
, 
int-rdiv: (a)/k1
, 
real: ℝ
, 
fact: (n)!
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
Definitions unfolded in proof : 
canonical-bound-property, 
rmul_preserves_rleq, 
r-archimedean, 
ratio-test-ext, 
rleq_functionality, 
r-archimedean2, 
iff_weakening_equal, 
exp-series-converges, 
exp-exists, 
guard: {T}
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
reg-seq-mul: reg-seq-mul(x;y)
, 
bnot: ¬bb
, 
le_int: i ≤z j
, 
reg-seq-adjust: reg-seq-adjust(n;x)
, 
reg-seq-inv: reg-seq-inv(x)
, 
canonical-bound: canonical-bound(r)
, 
imax: imax(a;b)
, 
accelerate: accelerate(k;f)
, 
eq_int: (i =z j)
, 
btrue: tt
, 
bfalse: ff
, 
mu-ge: mu-ge(f;n)
, 
rinv: rinv(x)
, 
int-to-real: r(n)
, 
rmul: a * b
, 
rdiv: (x/y)
, 
absval: |i|
, 
lt_int: i <z j
, 
ifthenelse: if b then t else f fi 
, 
quick-find: quick-find(p;n)
, 
rlessw: rlessw(x;y)
, 
rminus: -(x)
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
Lemmas referenced : 
int_subtype_base, 
subtype_base_sq, 
exp-exists, 
canonical-bound-property, 
rmul_preserves_rleq, 
r-archimedean, 
ratio-test-ext, 
rleq_functionality, 
r-archimedean2, 
iff_weakening_equal, 
exp-series-converges
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
independent_isectElimination, 
intEquality, 
cumulativity, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}x:\mBbbR{}.  \mexists{}a:\mBbbR{}.  \mSigma{}n.(x\^{}n)/(n)!  =  a
Date html generated:
2018_05_22-PM-02_04_08
Last ObjectModification:
2018_05_21-AM-00_16_53
Theory : reals
Home
Index