Nuprl Lemma : exp-series-converges
∀x:ℝ. Σn.(x^n)/(n)!↓
Proof
Definitions occuring in Statement :
series-converges: Σn.x[n]↓
,
rnexp: x^k1
,
int-rdiv: (a)/k1
,
real: ℝ
,
fact: (n)!
,
all: ∀x:A. B[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
exists: ∃x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
int_upper: {i...}
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
sq_stable: SqStable(P)
,
squash: ↓T
,
rneq: x ≠ y
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
less_than: a < b
,
less_than': less_than'(a;b)
,
true: True
,
nat_plus: ℕ+
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
rdiv: (x/y)
,
req_int_terms: t1 ≡ t2
,
rge: x ≥ y
,
nequal: a ≠ b ∈ T
,
subtract: n - m
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
cand: A c∧ B
,
le: A ≤ B
Latex:
\mforall{}x:\mBbbR{}. \mSigma{}n.(x\^{}n)/(n)!\mdownarrow{}
Date html generated:
2020_05_20-AM-11_26_54
Last ObjectModification:
2020_01_06-PM-00_34_55
Theory : reals
Home
Index