Nuprl Lemma : exp-series-converges

x:ℝ. Σn.(x^n)/(n)!↓


Proof




Definitions occuring in Statement :  series-converges: Σn.x[n]↓ rnexp: x^k1 int-rdiv: (a)/k1 real: fact: (n)! all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] nat: int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False and: P ∧ Q prop: subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q less_than: a < b less_than': less_than'(a;b) true: True nat_plus: + uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 rge: x ≥ y nequal: a ≠ b ∈  subtract: m so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B le: A ≤ B

Latex:
\mforall{}x:\mBbbR{}.  \mSigma{}n.(x\^{}n)/(n)!\mdownarrow{}



Date html generated: 2020_05_20-AM-11_26_54
Last ObjectModification: 2020_01_06-PM-00_34_55

Theory : reals


Home Index