Step
*
1
2
1
of Lemma
first-m-not-reg-property
1. X : Type
2. d : metric(X)
3. k : ℕ
4. s : ℕk ⟶ X
5. (↑m-not-reg(d;s;first-m-not-reg(d;s;k) - 1)) ∧ (∀j:ℕk. ¬↑m-not-reg(d;s;j) supposing j < first-m-not-reg(d;s;k) - 1)
supposing 0 < first-m-not-reg(d;s;k)
6. (∃i:ℕk. (↑m-not-reg(d;s;i)))
⇒ 0 < first-m-not-reg(d;s;k)
7. (∃i:ℕk. (↑m-not-reg(d;s;i)))
⇐ 0 < first-m-not-reg(d;s;k)
8. ∀n:ℕk. m-not-reg(d;s;n) = ff
9. ¬(first-m-not-reg(d;s;k) = 0 ∈ ℤ)
⊢ first-m-not-reg(d;s;k) = 0 ∈ ℤ
BY
{ ((D -3 THENA Auto) THEN ExRepD THEN D -4 With ⌜i⌝ THEN Auto) }
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. k : \mBbbN{}
4. s : \mBbbN{}k {}\mrightarrow{} X
5. (\muparrow{}m-not-reg(d;s;first-m-not-reg(d;s;k) - 1))
\mwedge{} (\mforall{}j:\mBbbN{}k. \mneg{}\muparrow{}m-not-reg(d;s;j) supposing j < first-m-not-reg(d;s;k) - 1)
supposing 0 < first-m-not-reg(d;s;k)
6. (\mexists{}i:\mBbbN{}k. (\muparrow{}m-not-reg(d;s;i))) {}\mRightarrow{} 0 < first-m-not-reg(d;s;k)
7. (\mexists{}i:\mBbbN{}k. (\muparrow{}m-not-reg(d;s;i))) \mLeftarrow{}{} 0 < first-m-not-reg(d;s;k)
8. \mforall{}n:\mBbbN{}k. m-not-reg(d;s;n) = ff
9. \mneg{}(first-m-not-reg(d;s;k) = 0)
\mvdash{} first-m-not-reg(d;s;k) = 0
By
Latex:
((D -3 THENA Auto) THEN ExRepD THEN D -4 With \mkleeneopen{}i\mkleeneclose{} THEN Auto)
Home
Index