Nuprl Lemma : first-m-not-reg-property
∀[X:Type]
  ∀d:metric(X). ∀k:ℕ. ∀s:ℕk ⟶ X.
    ((first-m-not-reg(d;s;k) = 0 ∈ ℤ ⇐⇒ ∀n:ℕk. m-not-reg(d;s;n) = ff)
    ∧ let i = first-m-not-reg(d;s;k) - 1 in
          (∀n:ℕi. m-not-reg(d;s;n) = ff) ∧ m-not-reg(d;s;i) = tt 
      supposing 0 < first-m-not-reg(d;s;k))
Proof
Definitions occuring in Statement : 
first-m-not-reg: first-m-not-reg(d;s;k), 
m-not-reg: m-not-reg(d;s;n), 
metric: metric(X), 
int_seg: {i..j-}, 
nat: ℕ, 
bfalse: ff, 
btrue: tt, 
bool: 𝔹, 
less_than: a < b, 
let: let, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
subtract: n - m, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
first-m-not-reg: first-m-not-reg(d;s;k), 
member: t ∈ T, 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
sq_stable: SqStable(P), 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
let: let, 
cand: A c∧ B
Lemmas referenced : 
search_property, 
m-not-reg_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
subtype_rel_function, 
int_seg_wf, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
zero-add, 
sq_stable__le, 
less-iff-le, 
add_functionality_wrt_le, 
le-add-cancel2, 
subtype_rel_self, 
istype-nat, 
metric_wf, 
istype-universe, 
first-m-not-reg_wf, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
bool_wf, 
int_seg_subtype_nat, 
bfalse_wf, 
eqtt_to_assert, 
istype-assert, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
decidable__equal_int, 
decidable__lt, 
assert_elim, 
btrue_neq_bfalse, 
member-less_than, 
istype-less_than, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
iff_imp_equal_bool, 
btrue_wf, 
istype-true
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
lambdaEquality_alt, 
isectElimination, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
hypothesis, 
productElimination, 
imageElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
because_Cache, 
addEquality, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
promote_hyp, 
functionIsType, 
instantiate, 
universeEquality, 
equalityIstype, 
intEquality, 
sqequalBase, 
equalitySymmetry, 
equalityTransitivity, 
inhabitedIsType, 
equalityElimination, 
cumulativity, 
applyLambdaEquality, 
productIsType, 
independent_pairEquality, 
axiomEquality, 
functionIsTypeImplies, 
isectIsType
Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}k:\mBbbN{}.  \mforall{}s:\mBbbN{}k  {}\mrightarrow{}  X.
        ((first-m-not-reg(d;s;k)  =  0  \mLeftarrow{}{}\mRightarrow{}  \mforall{}n:\mBbbN{}k.  m-not-reg(d;s;n)  =  ff)
        \mwedge{}  let  i  =  first-m-not-reg(d;s;k)  -  1  in
                    (\mforall{}n:\mBbbN{}i.  m-not-reg(d;s;n)  =  ff)  \mwedge{}  m-not-reg(d;s;i)  =  tt 
            supposing  0  <  first-m-not-reg(d;s;k))
Date html generated:
2019_10_30-AM-07_02_16
Last ObjectModification:
2019_10_03-PM-06_01_27
Theory : reals
Home
Index