Nuprl Lemma : m-not-reg_wf

[X:Type]. ∀[d:metric(X)]. ∀[n:ℕ]. ∀[s:ℕ1 ⟶ X].  (m-not-reg(d;s;n) ∈ 𝔹)


Proof




Definitions occuring in Statement :  m-not-reg: m-not-reg(d;s;n) metric: metric(X) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T m-not-reg: m-not-reg(d;s;n) all: x:A. B[x] subtype_rel: A ⊆B nat: uimplies: supposing a and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m top: Top true: True int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: isl: isl(x)
Lemmas referenced :  m-reg-test_wf subtype_rel_function int_seg_wf int_seg_subtype istype-false decidable__le not-le-2 condition-implies-le minus-add istype-void minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel subtype_rel_self nat_properties full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma istype-le istype-less_than btrue_wf bfalse_wf istype-nat metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination applyEquality because_Cache natural_numberEquality setElimination rename hypothesis independent_isectElimination addEquality independent_pairFormation lambdaFormation_alt unionElimination voidElimination productElimination independent_functionElimination isect_memberEquality_alt minusEquality multiplyEquality dependent_set_memberEquality_alt approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality universeIsType productIsType inhabitedIsType equalityIstype equalityTransitivity equalitySymmetry axiomEquality functionIsType isectIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  +  1  {}\mrightarrow{}  X].    (m-not-reg(d;s;n)  \mmember{}  \mBbbB{})



Date html generated: 2019_10_30-AM-07_00_30
Last ObjectModification: 2019_10_03-PM-05_55_12

Theory : reals


Home Index