Nuprl Lemma : fixedpoint-property_functionality
∀X:Type. ∀d:metric(X). ∀Y:Type. ∀d':metric(Y).  (homeomorphic(X;d;Y;d') ⇒ mcompact(X;d) ⇒ FP(X) ⇒ FP(Y))
Proof
Definitions occuring in Statement : 
mcompact: mcompact(X;d), 
fixedpoint-property: FP(X), 
homeomorphic: homeomorphic(X;dX;Y;dY), 
metric: metric(X), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
homeomorphic: homeomorphic(X;dX;Y;dY), 
exists: ∃x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
member: t ∈ T, 
fixedpoint-property: FP(X), 
m-unif-cont: UC(f:X ⟶ Y), 
uall: ∀[x:A]. B[x], 
mfun: FUN(X ⟶ Y), 
and: P ∧ Q, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rless: x < y, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
mcompose: mcompose(f;g), 
compose: f o g, 
sq_stable: SqStable(P), 
squash: ↓T, 
uiff: uiff(P;Q)
Latex:
\mforall{}X:Type.  \mforall{}d:metric(X).  \mforall{}Y:Type.  \mforall{}d':metric(Y).
    (homeomorphic(X;d;Y;d')  {}\mRightarrow{}  mcompact(X;d)  {}\mRightarrow{}  FP(X)  {}\mRightarrow{}  FP(Y))
Date html generated:
2020_05_20-PM-00_00_08
Last ObjectModification:
2019_11_20-PM-02_31_10
Theory : reals
Home
Index