Nuprl Lemma : fixedpoint-property_functionality
∀X:Type. ∀d:metric(X). ∀Y:Type. ∀d':metric(Y).  (homeomorphic(X;d;Y;d') 
⇒ mcompact(X;d) 
⇒ FP(X) 
⇒ FP(Y))
Proof
Definitions occuring in Statement : 
mcompact: mcompact(X;d)
, 
fixedpoint-property: FP(X)
, 
homeomorphic: homeomorphic(X;dX;Y;dY)
, 
metric: metric(X)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
homeomorphic: homeomorphic(X;dX;Y;dY)
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
member: t ∈ T
, 
fixedpoint-property: FP(X)
, 
m-unif-cont: UC(f:X ⟶ Y)
, 
uall: ∀[x:A]. B[x]
, 
mfun: FUN(X ⟶ Y)
, 
and: P ∧ Q
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
mcompose: mcompose(f;g)
, 
compose: f o g
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uiff: uiff(P;Q)
Latex:
\mforall{}X:Type.  \mforall{}d:metric(X).  \mforall{}Y:Type.  \mforall{}d':metric(Y).
    (homeomorphic(X;d;Y;d')  {}\mRightarrow{}  mcompact(X;d)  {}\mRightarrow{}  FP(X)  {}\mRightarrow{}  FP(Y))
Date html generated:
2020_05_20-PM-00_00_08
Last ObjectModification:
2019_11_20-PM-02_31_10
Theory : reals
Home
Index