Nuprl Lemma : fixedpoint-property_functionality

X:Type. ∀d:metric(X). ∀Y:Type. ∀d':metric(Y).  (homeomorphic(X;d;Y;d')  mcompact(X;d)  FP(X)  FP(Y))


Proof




Definitions occuring in Statement :  mcompact: mcompact(X;d) fixedpoint-property: FP(X) homeomorphic: homeomorphic(X;dX;Y;dY) metric: metric(X) all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q homeomorphic: homeomorphic(X;dX;Y;dY) exists: x:A. B[x] sq_exists: x:A [B[x]] member: t ∈ T fixedpoint-property: FP(X) m-unif-cont: UC(f:X ⟶ Y) uall: [x:A]. B[x] mfun: FUN(X ⟶ Y) and: P ∧ Q nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: subtype_rel: A ⊆B mcompose: mcompose(f;g) compose: g sq_stable: SqStable(P) squash: T uiff: uiff(P;Q)

Latex:
\mforall{}X:Type.  \mforall{}d:metric(X).  \mforall{}Y:Type.  \mforall{}d':metric(Y).
    (homeomorphic(X;d;Y;d')  {}\mRightarrow{}  mcompact(X;d)  {}\mRightarrow{}  FP(X)  {}\mRightarrow{}  FP(Y))



Date html generated: 2020_05_20-PM-00_00_08
Last ObjectModification: 2019_11_20-PM-02_31_10

Theory : reals


Home Index