Step
*
2
1
of Lemma
fun-ratio-test-everywhere
1. f : ℕ ⟶ ℝ ⟶ ℝ
2. ∀n:ℕ. ∀x,y:ℝ. ((x = y)
⇒ (f[n;x] = f[n;y]))
3. ∀m:ℕ+. ∃c:ℝ. ((r0 ≤ c) ∧ (c < r1) ∧ (∃N:ℕ. ∀n:{N...}. ∀x:{x:ℝ| |x| ≤ r(m)} . (|f[n + 1;x]| ≤ (c * |f[n;x]|))))
4. m : {m:ℕ+| icompact(i-approx((-∞, ∞);m))}
⊢ ∃c:ℝ. ((r0 ≤ c) ∧ (c < r1) ∧ (∃N:ℕ. ∀n:{N...}. ∀x:{x:ℝ| x ∈ i-approx((-∞, ∞);m)} . (|f[n + 1;x]| ≤ (c * |f[n;x]|))))
BY
{ ((InstHyp [⌜m⌝] (-2)⋅ THENA Auto) THEN ParallelLast THEN Auto) }
1
1. f : ℕ ⟶ ℝ ⟶ ℝ
2. ∀n:ℕ. ∀x,y:ℝ. ((x = y)
⇒ (f[n;x] = f[n;y]))
3. ∀m:ℕ+. ∃c:ℝ. ((r0 ≤ c) ∧ (c < r1) ∧ (∃N:ℕ. ∀n:{N...}. ∀x:{x:ℝ| |x| ≤ r(m)} . (|f[n + 1;x]| ≤ (c * |f[n;x]|))))
4. m : {m:ℕ+| icompact(i-approx((-∞, ∞);m))}
5. c : ℝ
6. r0 ≤ c
7. c < r1
8. ∃N:ℕ. ∀n:{N...}. ∀x:{x:ℝ| |x| ≤ r(m)} . (|f[n + 1;x]| ≤ (c * |f[n;x]|))
9. r0 ≤ c
10. c < r1
⊢ ∃N:ℕ. ∀n:{N...}. ∀x:{x:ℝ| x ∈ i-approx((-∞, ∞);m)} . (|f[n + 1;x]| ≤ (c * |f[n;x]|))
Latex:
Latex:
1. f : \mBbbN{} {}\mrightarrow{} \mBbbR{} {}\mrightarrow{} \mBbbR{}
2. \mforall{}n:\mBbbN{}. \mforall{}x,y:\mBbbR{}. ((x = y) {}\mRightarrow{} (f[n;x] = f[n;y]))
3. \mforall{}m:\mBbbN{}\msupplus{}
\mexists{}c:\mBbbR{}
((r0 \mleq{} c)
\mwedge{} (c < r1)
\mwedge{} (\mexists{}N:\mBbbN{}. \mforall{}n:\{N...\}. \mforall{}x:\{x:\mBbbR{}| |x| \mleq{} r(m)\} . (|f[n + 1;x]| \mleq{} (c * |f[n;x]|))))
4. m : \{m:\mBbbN{}\msupplus{}| icompact(i-approx((-\minfty{}, \minfty{});m))\}
\mvdash{} \mexists{}c:\mBbbR{}
((r0 \mleq{} c)
\mwedge{} (c < r1)
\mwedge{} (\mexists{}N:\mBbbN{}. \mforall{}n:\{N...\}. \mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx((-\minfty{}, \minfty{});m)\} . (|f[n + 1;x]| \mleq{} (c * |f[n;x]|))))
By
Latex:
((InstHyp [\mkleeneopen{}m\mkleeneclose{}] (-2)\mcdot{} THENA Auto) THEN ParallelLast THEN Auto)
Home
Index