Nuprl Lemma : fun-series-converges-on-compact

I:Interval. ∀f:ℕ ⟶ I ⟶ℝ.
  ((∀m:{m:ℕ+icompact(i-approx(I;m))} . Σn.f[n;x]↓ for x ∈ i-approx(I;m))  Σn.f[n;x]↓ for x ∈ I)


Proof




Definitions occuring in Statement :  fun-series-converges: Σn.f[n; x]↓ for x ∈ I icompact: icompact(I) rfun: I ⟶ℝ i-approx: i-approx(I;n) interval: Interval nat_plus: + nat: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  fun-series-converges: Σn.f[n; x]↓ for x ∈ I all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s]
Lemmas referenced :  fun-converges-on-compact all_wf nat_plus_wf icompact_wf i-approx_wf fun-converges_wf rsum_wf i-member-approx i-member_wf real_wf nat_wf rfun_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache independent_functionElimination hypothesis isectElimination setEquality hypothesisEquality lambdaEquality setElimination rename applyEquality dependent_set_memberEquality functionEquality

Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}m:\{m:\mBbbN{}\msupplus{}|  icompact(i-approx(I;m))\}  .  \mSigma{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  i-approx(I;m))  {}\mRightarrow{}  \mSigma{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)



Date html generated: 2016_05_18-AM-09_55_16
Last ObjectModification: 2015_12_27-PM-11_08_54

Theory : reals


Home Index